import ctypes
import sys
import os
import subprocess
import resource
import threading
import time
import gradio as gr
import argparse
PROMPT_TEXT_SYSTEM_COMMON = (
"You are a helpful assistant who answers things succintly and in steps. "
"You listen to the user's question and answer accordingly, or point out factual "
"errors in the user's claims."
)
# Re: phi3.5
PROMPT_TEXT_PREFIX = (
"<|system|> {content} <|end|>\n<|user|>"
).format(content = PROMPT_TEXT_SYSTEM_COMMON)
PROMPT_TEXT_POSTFIX = "<|end|>\n<|assistant|>"
# Re: Qwen
# PROMPT_TEXT_PREFIX = (
# "<|im_start|>system {content} <|im_end|>\n<|im_start|>user"
# ).format(content = PROMPT_TEXT_SYSTEM_COMMON)
# PROMPT_TEXT_POSTFIX = "<|im_end|>\n<|im_start|>assistant"
# Re: TinyLlama
# PROMPT_TEXT_PREFIX = (
# "[INST] <>{content}<>\n"
# ).format(content = PROMPT_TEXT_SYSTEM_COMMON)
# PROMPT_TEXT_POSTFIX = " [/INST]\n"
# Set environment variables
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "8080"
# Set the dynamic library path
rkllm_lib = ctypes.CDLL('./lib/librkllmrt.so')
# Define the structures from the library
RKLLM_Handle_t = ctypes.c_void_p
userdata = ctypes.c_void_p(None)
LLMCallState = ctypes.c_int
LLMCallState.RKLLM_RUN_NORMAL = 0
LLMCallState.RKLLM_RUN_WAITING = 1
LLMCallState.RKLLM_RUN_FINISH = 2
LLMCallState.RKLLM_RUN_ERROR = 3
LLMCallState.RKLLM_RUN_GET_LAST_HIDDEN_LAYER = 4
RKLLMInputMode = ctypes.c_int
RKLLMInputMode.RKLLM_INPUT_PROMPT = 0
RKLLMInputMode.RKLLM_INPUT_TOKEN = 1
RKLLMInputMode.RKLLM_INPUT_EMBED = 2
RKLLMInputMode.RKLLM_INPUT_MULTIMODAL = 3
RKLLMInferMode = ctypes.c_int
RKLLMInferMode.RKLLM_INFER_GENERATE = 0
RKLLMInferMode.RKLLM_INFER_GET_LAST_HIDDEN_LAYER = 1
class RKLLMExtendParam(ctypes.Structure):
_fields_ = [
("base_domain_id", ctypes.c_int32),
("reserved", ctypes.c_uint8 * 112)
]
class RKLLMParam(ctypes.Structure):
_fields_ = [
("model_path", ctypes.c_char_p),
("max_context_len", ctypes.c_int32),
("max_new_tokens", ctypes.c_int32),
("top_k", ctypes.c_int32),
("top_p", ctypes.c_float),
("temperature", ctypes.c_float),
("repeat_penalty", ctypes.c_float),
("frequency_penalty", ctypes.c_float),
("presence_penalty", ctypes.c_float),
("mirostat", ctypes.c_int32),
("mirostat_tau", ctypes.c_float),
("mirostat_eta", ctypes.c_float),
("skip_special_token", ctypes.c_bool),
("is_async", ctypes.c_bool),
("img_start", ctypes.c_char_p),
("img_end", ctypes.c_char_p),
("img_content", ctypes.c_char_p),
("extend_param", RKLLMExtendParam),
]
class RKLLMLoraAdapter(ctypes.Structure):
_fields_ = [
("lora_adapter_path", ctypes.c_char_p),
("lora_adapter_name", ctypes.c_char_p),
("scale", ctypes.c_float)
]
class RKLLMEmbedInput(ctypes.Structure):
_fields_ = [
("embed", ctypes.POINTER(ctypes.c_float)),
("n_tokens", ctypes.c_size_t)
]
class RKLLMTokenInput(ctypes.Structure):
_fields_ = [
("input_ids", ctypes.POINTER(ctypes.c_int32)),
("n_tokens", ctypes.c_size_t)
]
class RKLLMMultiModelInput(ctypes.Structure):
_fields_ = [
("prompt", ctypes.c_char_p),
("image_embed", ctypes.POINTER(ctypes.c_float)),
("n_image_tokens", ctypes.c_size_t)
]
class RKLLMInputUnion(ctypes.Union):
_fields_ = [
("prompt_input", ctypes.c_char_p),
("embed_input", RKLLMEmbedInput),
("token_input", RKLLMTokenInput),
("multimodal_input", RKLLMMultiModelInput)
]
class RKLLMInput(ctypes.Structure):
_fields_ = [
("input_mode", ctypes.c_int),
("input_data", RKLLMInputUnion)
]
class RKLLMLoraParam(ctypes.Structure):
_fields_ = [
("lora_adapter_name", ctypes.c_char_p)
]
class RKLLMPromptCacheParam(ctypes.Structure):
_fields_ = [
("save_prompt_cache", ctypes.c_int),
("prompt_cache_path", ctypes.c_char_p)
]
class RKLLMInferParam(ctypes.Structure):
_fields_ = [
("mode", RKLLMInferMode),
("lora_params", ctypes.POINTER(RKLLMLoraParam)),
("prompt_cache_params", ctypes.POINTER(RKLLMPromptCacheParam))
]
class RKLLMResultLastHiddenLayer(ctypes.Structure):
_fields_ = [
("hidden_states", ctypes.POINTER(ctypes.c_float)),
("embd_size", ctypes.c_int),
("num_tokens", ctypes.c_int)
]
class RKLLMResult(ctypes.Structure):
_fields_ = [
("text", ctypes.c_char_p),
("size", ctypes.c_int),
("last_hidden_layer", RKLLMResultLastHiddenLayer)
]
# Define global variables to store the callback function output for displaying in the Gradio interface
global_text = []
global_state = -1
split_byte_data = bytes(b"") # Used to store the segmented byte data
# Define the callback function
def callback_impl(result, userdata, state):
global global_text, global_state, split_byte_data
if state == LLMCallState.RKLLM_RUN_FINISH:
global_state = state
print("\n")
sys.stdout.flush()
elif state == LLMCallState.RKLLM_RUN_ERROR:
global_state = state
print("run error")
sys.stdout.flush()
elif state == LLMCallState.RKLLM_RUN_GET_LAST_HIDDEN_LAYER:
'''
If using the GET_LAST_HIDDEN_LAYER function, the callback interface will return the memory pointer: last_hidden_layer, the number of tokens: num_tokens, and the size of the hidden layer: embd_size.
With these three parameters, you can retrieve the data from last_hidden_layer.
Note: The data needs to be retrieved during the current callback; if not obtained in time, the pointer will be released by the next callback.
'''
if result.last_hidden_layer.embd_size != 0 and result.last_hidden_layer.num_tokens != 0:
data_size = result.last_hidden_layer.embd_size * result.last_hidden_layer.num_tokens * ctypes.sizeof(ctypes.c_float)
print(f"data_size: {data_size}")
global_text.append(f"data_size: {data_size}\n")
output_path = os.getcwd() + "/last_hidden_layer.bin"
with open(output_path, "wb") as outFile:
data = ctypes.cast(result.last_hidden_layer.hidden_states, ctypes.POINTER(ctypes.c_float))
float_array_type = ctypes.c_float * (data_size // ctypes.sizeof(ctypes.c_float))
float_array = float_array_type.from_address(ctypes.addressof(data.contents))
outFile.write(bytearray(float_array))
print(f"Data saved to {output_path} successfully!")
global_text.append(f"Data saved to {output_path} successfully!")
else:
print("Invalid hidden layer data.")
global_text.append("Invalid hidden layer data.")
global_state = state
time.sleep(0.05) # Delay for 0.05 seconds to wait for the output result
sys.stdout.flush()
else:
# Save the output token text and the RKLLM running state
global_state = state
# Monitor if the current byte data is complete; if incomplete, record it for later parsing
try:
global_text.append((split_byte_data + result.contents.text).decode('utf-8'))
print((split_byte_data + result.contents.text).decode('utf-8'), end='')
split_byte_data = bytes(b"")
except:
split_byte_data += result.contents.text
sys.stdout.flush()
# Connect the callback function between the Python side and the C++ side
callback_type = ctypes.CFUNCTYPE(None, ctypes.POINTER(RKLLMResult), ctypes.c_void_p, ctypes.c_int)
callback = callback_type(callback_impl)
# Define the RKLLM class, which includes initialization, inference, and release operations for the RKLLM model in the dynamic library
class RKLLM(object):
def __init__(self, model_path, lora_model_path = None, prompt_cache_path = None):
rkllm_param = RKLLMParam()
rkllm_param.model_path = bytes(model_path, 'utf-8')
rkllm_param.max_context_len = 4096
rkllm_param.max_new_tokens = 256
rkllm_param.skip_special_token = True
rkllm_param.top_k = 40
rkllm_param.top_p = 0.9
rkllm_param.temperature = 0.5
rkllm_param.repeat_penalty = 1.1
rkllm_param.frequency_penalty = 0.0
rkllm_param.presence_penalty = 0.0
rkllm_param.mirostat = 0
rkllm_param.mirostat_tau = 5.0
rkllm_param.mirostat_eta = 0.1
rkllm_param.is_async = True
rkllm_param.img_start = "".encode('utf-8')
rkllm_param.img_end = "".encode('utf-8')
rkllm_param.img_content = "".encode('utf-8')
rkllm_param.extend_param.base_domain_id = 0
self.handle = RKLLM_Handle_t()
self.rkllm_init = rkllm_lib.rkllm_init
self.rkllm_init.argtypes = [ctypes.POINTER(RKLLM_Handle_t), ctypes.POINTER(RKLLMParam), callback_type]
self.rkllm_init.restype = ctypes.c_int
self.rkllm_init(ctypes.byref(self.handle), ctypes.byref(rkllm_param), callback)
self.rkllm_run = rkllm_lib.rkllm_run
self.rkllm_run.argtypes = [RKLLM_Handle_t, ctypes.POINTER(RKLLMInput), ctypes.POINTER(RKLLMInferParam), ctypes.c_void_p]
self.rkllm_run.restype = ctypes.c_int
self.rkllm_destroy = rkllm_lib.rkllm_destroy
self.rkllm_destroy.argtypes = [RKLLM_Handle_t]
self.rkllm_destroy.restype = ctypes.c_int
self.lora_adapter_path = None
self.lora_model_name = None
if lora_model_path:
self.lora_adapter_path = lora_model_path
self.lora_adapter_name = "test"
lora_adapter = RKLLMLoraAdapter()
ctypes.memset(ctypes.byref(lora_adapter), 0, ctypes.sizeof(RKLLMLoraAdapter))
lora_adapter.lora_adapter_path = ctypes.c_char_p((self.lora_adapter_path).encode('utf-8'))
lora_adapter.lora_adapter_name = ctypes.c_char_p((self.lora_adapter_name).encode('utf-8'))
lora_adapter.scale = 1.0
rkllm_load_lora = rkllm_lib.rkllm_load_lora
rkllm_load_lora.argtypes = [RKLLM_Handle_t, ctypes.POINTER(RKLLMLoraAdapter)]
rkllm_load_lora.restype = ctypes.c_int
rkllm_load_lora(self.handle, ctypes.byref(lora_adapter))
self.prompt_cache_path = None
if prompt_cache_path:
self.prompt_cache_path = prompt_cache_path
rkllm_load_prompt_cache = rkllm_lib.rkllm_load_prompt_cache
rkllm_load_prompt_cache.argtypes = [RKLLM_Handle_t, ctypes.c_char_p]
rkllm_load_prompt_cache.restype = ctypes.c_int
rkllm_load_prompt_cache(self.handle, ctypes.c_char_p((prompt_cache_path).encode('utf-8')))
def run(self, prompt):
rkllm_lora_params = None
if self.lora_model_name:
rkllm_lora_params = RKLLMLoraParam()
rkllm_lora_params.lora_adapter_name = ctypes.c_char_p((self.lora_model_name).encode('utf-8'))
rkllm_infer_params = RKLLMInferParam()
ctypes.memset(ctypes.byref(rkllm_infer_params), 0, ctypes.sizeof(RKLLMInferParam))
rkllm_infer_params.mode = RKLLMInferMode.RKLLM_INFER_GENERATE
rkllm_infer_params.lora_params = ctypes.byref(rkllm_lora_params) if rkllm_lora_params else None
rkllm_input = RKLLMInput()
rkllm_input.input_mode = RKLLMInputMode.RKLLM_INPUT_PROMPT
rkllm_input.input_data.prompt_input = ctypes.c_char_p((PROMPT_TEXT_PREFIX + prompt + PROMPT_TEXT_POSTFIX).encode('utf-8'))
self.rkllm_run(self.handle, ctypes.byref(rkllm_input), ctypes.byref(rkllm_infer_params), None)
return
def release(self):
self.rkllm_destroy(self.handle)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--rkllm_model_path', type=str, required=True, help='Absolute path of the converted RKLLM model on the Linux board;')
parser.add_argument('--target_platform', type=str, required=True, help='Target platform: e.g., rk3588/rk3576;')
parser.add_argument('--lora_model_path', type=str, help='Absolute path of the lora_model on the Linux board;')
parser.add_argument('--prompt_cache_path', type=str, help='Absolute path of the prompt_cache file on the Linux board;')
args = parser.parse_args()
if not os.path.exists(args.rkllm_model_path):
print("Error: Please provide the correct rkllm model path, and ensure it is the absolute path on the board.")
sys.stdout.flush()
exit()
if not (args.target_platform in ["rk3588", "rk3576"]):
print("Error: Please specify the correct target platform: rk3588/rk3576.")
sys.stdout.flush()
exit()
if args.lora_model_path:
if not os.path.exists(args.lora_model_path):
print("Error: Please provide the correct lora_model path, and advise it is the absolute path on the board.")
sys.stdout.flush()
exit()
if args.prompt_cache_path:
if not os.path.exists(args.prompt_cache_path):
print("Error: Please provide the correct prompt_cache_file path, and advise it is the absolute path on the board.")
sys.stdout.flush()
exit()
# Fix frequency
# command = "sudo bash fix_freq_{}.sh".format(args.target_platform)
# subprocess.run(command, shell=True)
# Set resource limit
resource.setrlimit(resource.RLIMIT_NOFILE, (102400, 102400))
# Initialize RKLLM model
print("=========init....===========")
sys.stdout.flush()
model_path = args.rkllm_model_path
rkllm_model = RKLLM(model_path, args.lora_model_path, args.prompt_cache_path)
print("RKLLM Model has been initialized successfully!")
print("==============================")
sys.stdout.flush()
# Record the user's input prompt
def get_user_input(user_message, history):
history = history + [[user_message, None]]
return "", history
# Retrieve the output from the RKLLM model and print it in a streaming manner
def get_RKLLM_output(history):
# Link global variables to retrieve the output information from the callback function
global global_text, global_state
global_text = []
global_state = -1
# Create a thread for model inference
model_thread = threading.Thread(target=rkllm_model.run, args=(history[-1][0],))
model_thread.start()
# history[-1][1] represents the current dialogue
history[-1][1] = ""
# Wait for the model to finish running and periodically check the inference thread of the model
model_thread_finished = False
while not model_thread_finished:
while len(global_text) > 0:
history[-1][1] += global_text.pop(0)
time.sleep(0.005)
# Gradio automatically pushes the result returned by the yield statement when calling the then method
yield history
model_thread.join(timeout=0.005)
model_thread_finished = not model_thread.is_alive()
# Create a Gradio interface
with gr.Blocks(title="Chat with RKLLM") as chatRKLLM:
gr.Markdown("
Chat with RKLLM
")
gr.Markdown("### Enter your question in the inputTextBox and press the Enter key to chat with the RKLLM model.")
# Create a Chatbot component to display conversation history
rkllmServer = gr.Chatbot(height=600)
# Create a Textbox component for user message input
msg = gr.Textbox(placeholder="Please input your question here...", label="inputTextBox")
# Create a Button component to clear the chat history.
clear = gr.Button("Clear")
# Submit the user's input message to the get_user_input function and immediately update the chat history.
# Then call the get_RKLLM_output function to further update the chat history.
# The queue=False parameter ensures that these updates are not queued, but executed immediately.
msg.submit(get_user_input, [msg, rkllmServer], [msg, rkllmServer], queue=False).then(get_RKLLM_output, rkllmServer, rkllmServer)
# When the clear button is clicked, perform a no-operation (lambda: None) and immediately clear the chat history.
clear.click(lambda: None, None, rkllmServer, queue=False)
# Enable the event queue system.
chatRKLLM.queue()
# Start the Gradio application.
chatRKLLM.launch()
print("====================")
print("RKLLM model inference completed, releasing RKLLM model resources...")
rkllm_model.release()
print("====================")