...
This commit is contained in:
parent
86a47662ce
commit
c5232bc821
8 changed files with 397 additions and 9 deletions
|
|
@ -58,10 +58,12 @@ Same goes for operators in e.g, CCS:
|
|||
|
||||
\begin{definition}[CCS: expansion theorem]
|
||||
Suppose:
|
||||
\begin{align*}
|
||||
P \coloneqq& \sum_{i \in I} a_i.P_i \\
|
||||
Q \coloneqq& \sum_{j \in J} b_i.Q_j
|
||||
\end{align*}
|
||||
\begin{center}
|
||||
\begin{tabular}{cc}
|
||||
$P \coloneqq \sum_{i \in I} a_i.P_i$ &
|
||||
$Q \coloneqq \sum_{j \in J} b_i.Q_j$
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
Then,
|
||||
\begin{align*}
|
||||
|
|
@ -97,20 +99,64 @@ Same goes for operators in e.g, CCS:
|
|||
\paragraph*{Rooted Bisimilarity}
|
||||
We note that depending on semantics of $\mathcal{L}$, equivalences may (and in fact likely) fail to be a congurence over $\mathcal{L}$. This also is the case for e.g., branching bisimilarity: $\tau.a =_{BB} a$ but $\tau.a + b \ne_{BB} a + b$.
|
||||
|
||||
ACP and CCS fixes this by changing the equivalence operator.
|
||||
|
||||
ACP and CCS fixes this by changing the equivalence operator. CSP fixes this by foregoing the $+$ operator.
|
||||
\begin{definition}[Rooted Branching Bisimilarity]
|
||||
\begin{align*}
|
||||
P =_{rBB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{a} Q^{'} \wedge P^{'} =_{BB} Q^{'})\ \wedge \\
|
||||
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{a} P^{'} \wedge P^{'} =_{BB} Q^{'})
|
||||
\end{align*}
|
||||
|
||||
$=_{rBB}$ is equivalent to branching bisimulation congruence $=_{BB}^c$ over ACP.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}[Rooted Weak Bisimilarity]
|
||||
\begin{align*}
|
||||
P =_{rWB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{a} Q^{'} \wedge P^{'} =_{WB} Q^{'})\ \wedge \\
|
||||
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{a} P^{'} \wedge P^{'} =_{WB} Q^{'})
|
||||
P =_{rWB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{\tau \ast a \tau \ast} Q^{'} \wedge P^{'} =_{WB} Q^{'})\ \wedge \\
|
||||
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{\tau \ast a \tau \ast} P^{'} \wedge P^{'} =_{WB} Q^{'})
|
||||
\end{align*}
|
||||
|
||||
$=_{rWB}$ is equivalent to weak bisimulation congruence $=_{WB}^c$ over CCS.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}[Eq. axiomisation for rBB, rWB]
|
||||
$=_{rWB}$ is axiomatised as follows:
|
||||
\begin{align}
|
||||
a.\tau.P &= a.P \\
|
||||
\tau.P &= \tau.P + P \\
|
||||
a.(\tau.P + Q) &= a.(\tau.P + Q) + a.P
|
||||
\end{align}
|
||||
|
||||
$=_{rBB}$ is axiomatised as follows:
|
||||
\begin{equation*}
|
||||
a.(\tau.(P + Q) + Q) = a.(P + Q)
|
||||
\end{equation*}
|
||||
\end{definition}
|
||||
|
||||
\paragraph*{Strongly/Weakly Guarded Recursions}
|
||||
Recall that a recursive spec of the form e.g. $X = a.(b + X)$ is guarded -- $X$ exists as a subexpression of $X$ -- and are equivlent modulo strong bisimilarity (viz. RSP).
|
||||
|
||||
On the other hand $X = \tau.X$ has solely equivalent solutions modulo $=_{B}$ but not up to e.g. $=_{rBB}$. This breaks the equivalence lattice -- we hence need a stronger concept of \underline{unguardedness} for $=_{B}$.
|
||||
|
||||
\begin{definition}[strong unguardedness]
|
||||
A \textbf{strongly unguarded} recursive specification is one where, for
|
||||
\begin{equation*}
|
||||
X = \mathsf{Expr}(X, \dots)
|
||||
\end{equation*}
|
||||
the recursive variable $X$ occurs NOT in a subterm of the form:
|
||||
\begin{equation*}
|
||||
a \leftarrow A \cup \{\tau\}: a.P^{'}, X \in P^{'}
|
||||
\end{equation*}
|
||||
as in, $X$ is not guarded by $\forall a \in A$ nor $\tau$.
|
||||
|
||||
It turns out that \textbf{RSP is sound modulo bisimulation for all non-strongly-unguarded recursive specifications}.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}[weak unguardedness]
|
||||
Likewise, a \textbf{weakly unguarded} recursive specification is one where recursive variable $X$ is NOT guarded by $\forall a \in A$ only.
|
||||
|
||||
Note that strong unguardedness entails weak unguardedness.
|
||||
|
||||
\textbf{RSP is sound modulo weak/branching bisimulation for all non-weakly-unguarded recursive specifications}.
|
||||
\end{definition}
|
||||
|
||||
\end{document}
|
||||
Loading…
Add table
Add a link
Reference in a new issue