This commit is contained in:
Zhengyi Chen 2024-04-20 22:38:16 +01:00
parent 86a47662ce
commit c5232bc821
8 changed files with 397 additions and 9 deletions

View file

@ -58,10 +58,12 @@ Same goes for operators in e.g, CCS:
\begin{definition}[CCS: expansion theorem]
Suppose:
\begin{align*}
P \coloneqq& \sum_{i \in I} a_i.P_i \\
Q \coloneqq& \sum_{j \in J} b_i.Q_j
\end{align*}
\begin{center}
\begin{tabular}{cc}
$P \coloneqq \sum_{i \in I} a_i.P_i$ &
$Q \coloneqq \sum_{j \in J} b_i.Q_j$
\end{tabular}
\end{center}
Then,
\begin{align*}
@ -97,20 +99,64 @@ Same goes for operators in e.g, CCS:
\paragraph*{Rooted Bisimilarity}
We note that depending on semantics of $\mathcal{L}$, equivalences may (and in fact likely) fail to be a congurence over $\mathcal{L}$. This also is the case for e.g., branching bisimilarity: $\tau.a =_{BB} a$ but $\tau.a + b \ne_{BB} a + b$.
ACP and CCS fixes this by changing the equivalence operator.
ACP and CCS fixes this by changing the equivalence operator. CSP fixes this by foregoing the $+$ operator.
\begin{definition}[Rooted Branching Bisimilarity]
\begin{align*}
P =_{rBB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{a} Q^{'} \wedge P^{'} =_{BB} Q^{'})\ \wedge \\
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{a} P^{'} \wedge P^{'} =_{BB} Q^{'})
\end{align*}
$=_{rBB}$ is equivalent to branching bisimulation congruence $=_{BB}^c$ over ACP.
\end{definition}
\begin{definition}[Rooted Weak Bisimilarity]
\begin{align*}
P =_{rWB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{a} Q^{'} \wedge P^{'} =_{WB} Q^{'})\ \wedge \\
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{a} P^{'} \wedge P^{'} =_{WB} Q^{'})
P =_{rWB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{\tau \ast a \tau \ast} Q^{'} \wedge P^{'} =_{WB} Q^{'})\ \wedge \\
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{\tau \ast a \tau \ast} P^{'} \wedge P^{'} =_{WB} Q^{'})
\end{align*}
$=_{rWB}$ is equivalent to weak bisimulation congruence $=_{WB}^c$ over CCS.
\end{definition}
\begin{definition}[Eq. axiomisation for rBB, rWB]
$=_{rWB}$ is axiomatised as follows:
\begin{align}
a.\tau.P &= a.P \\
\tau.P &= \tau.P + P \\
a.(\tau.P + Q) &= a.(\tau.P + Q) + a.P
\end{align}
$=_{rBB}$ is axiomatised as follows:
\begin{equation*}
a.(\tau.(P + Q) + Q) = a.(P + Q)
\end{equation*}
\end{definition}
\paragraph*{Strongly/Weakly Guarded Recursions}
Recall that a recursive spec of the form e.g. $X = a.(b + X)$ is guarded -- $X$ exists as a subexpression of $X$ -- and are equivlent modulo strong bisimilarity (viz. RSP).
On the other hand $X = \tau.X$ has solely equivalent solutions modulo $=_{B}$ but not up to e.g. $=_{rBB}$. This breaks the equivalence lattice -- we hence need a stronger concept of \underline{unguardedness} for $=_{B}$.
\begin{definition}[strong unguardedness]
A \textbf{strongly unguarded} recursive specification is one where, for
\begin{equation*}
X = \mathsf{Expr}(X, \dots)
\end{equation*}
the recursive variable $X$ occurs NOT in a subterm of the form:
\begin{equation*}
a \leftarrow A \cup \{\tau\}: a.P^{'}, X \in P^{'}
\end{equation*}
as in, $X$ is not guarded by $\forall a \in A$ nor $\tau$.
It turns out that \textbf{RSP is sound modulo bisimulation for all non-strongly-unguarded recursive specifications}.
\end{definition}
\begin{definition}[weak unguardedness]
Likewise, a \textbf{weakly unguarded} recursive specification is one where recursive variable $X$ is NOT guarded by $\forall a \in A$ only.
Note that strong unguardedness entails weak unguardedness.
\textbf{RSP is sound modulo weak/branching bisimulation for all non-weakly-unguarded recursive specifications}.
\end{definition}
\end{document}