on L2
This commit is contained in:
commit
f87d416234
8 changed files with 623 additions and 0 deletions
27
02-semantic-equivalences.tex
Normal file
27
02-semantic-equivalences.tex
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
\documentclass[99-notes-packed.tex]{subfiles}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{background}[lattice]
|
||||
A \textbf{lattice} describes a real coordinate space $\mathbb{R}^n$ that satisfies:
|
||||
\begin{itemize}
|
||||
\item {
|
||||
Addition / subtraction between two points always produce another point in lattice -- i.e., closed under addition / subtraction.
|
||||
}
|
||||
\item {
|
||||
Lattice points are separated by bounded distances in some range $(0, \mathrm{max}]$.
|
||||
}
|
||||
\end{itemize}
|
||||
\end{background}
|
||||
|
||||
Define a lattice over which \textit{semantic equivalence relations} for spec. and impl. verification is defined.
|
||||
|
||||
\begin{definition}[discrimination measure]
|
||||
One equivalence relation $\equiv$ is \textbf{finer} / \textbf{more discriminating} than another $\sim$ if each $\equiv$-eq. class is a subset of a $\sim$-eq. class. In other words,
|
||||
\begin{align*}
|
||||
\ &p \equiv q \implies p \sim q \\
|
||||
\iff\ &\equiv\ \mathrm{finer\ than}\ \sim
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
|
||||
\end{document}
|
||||
Loading…
Add table
Add a link
Reference in a new issue