
1 LTS; ACP

LTS and Process Graphs Both specifications and imple-
mentations could be represented by models of concurrency , for
example labelled transition systems (LTS) or process graphs.

Definition 1.1 (Process Graph) A process graph is a triple
(S, I,_) such that:

• S a set of states;

• I ∈ S an initial state;

• _ a set of triples (s, a, t) each describing a (named) re-
lation S → S:

– s, t ∈ S;

– a ∈ Act – a set of actions.

Definition 1.2 (LTS) Same as process graph, except without
an initial state. Sometimes used synonymously with process
graphs bc. mathematicians are evil.

Alternatively, one may use process algebraic expressions to
formally represent spec.s and impl.s, for example using CCS
(Calculus of Communicating Systems), CSP (Communicating
Sequential Processes), and ACP (Algebra of Communicating
Processes). Each semantics is of different expressive power.

ACP Define the set of operations:

• ε (successful termination – ACPε extension).

• δ (deadlock).

• a (action constant) for each action a ∈ Act.

Each a describe a visible action – τ /∈ Act;

• P ·Q (sequential composition between processes P,Q)

• P +Q (summation / choice / alternative composition);

• P ||Q (parallel composition).

• ∂H(P) (restriction / encapsulation).

Given set of (visible) actions H, this removes ∀a ∈ H in
P .

Practically this is often used after defining γ(a, b) to en-
force sync – via removing non-synced a.b or b.a behaviors;

• τI(P) (abstraction – ACPτ extension).

Given set of (visible) actions I, this converts ∀a ∈ I into
τ in P .

A τ action is non-observable – this will be significant
for describing traces & equivalence relations.

• γ : A×A→ A (partial communication function).

For example, γ(a, b) defines new (synchronized) visible
action alongside a, b.

We further define the following transition rules (omitting
commutative equivalents). First, transition rules for basic pro-
cess algebra wrt. termination, sequential composition, and
choice:

a
a−→ ε

a
a−→ ε

a+ b
a−→ ε

a
a−→ ε

a · b a−→ b

a
a−→ a

′

a+ b
a−→ a

′

a
a−→ a

′

a · b a−→ a
′ · b

Then, for parallel processes which may or may not commu-
nicate:

a
a−→ ε

a||b a−→ b

a
a−→ a

′

a||b a−→ a
′ ||b

a
a−→ ε b

b−→ ε

a||b γ(a,b)−−−−→ ε

a
a−→ a

′
b

b−→ ε

a||b γ(a,b)−−−−→ a
′

a
a−→ ε b

b−→ b
′

a||b γ(a,b)−−−−→ b
′

a
a−→ a

′
b

b−→ b
′

a||b γ(a,b)−−−−→ a
′ ||b′

Furthermore, for encapsulation ∂H :

a
x−→ ε

∂H(a)
x−→ ε

x /∈ H
a

x−→ a
′

∂H(a)
x−→ ∂H(a

′
)
x /∈ H

This is to say, ∂H(a) can execute all transitions of a that are
also not in H.

Finally, deadlocks does not display any behavior – that
is, a δ process cannot transition to any other states no matter
what (though obviously as a constituent part of e.g., a parallel
process the other concurrent constituent can still run).

Background 1.1 (commutativity)

f(a, b) = f(b, a) ⇐⇒ f commutative

Background 1.2 (associativity)

(a ◦ b) ◦ c = a ◦ (b ◦ c) ⇐⇒ ◦ associative

Background 1.3 (distributivity)

f(x, a ◦ b) = f(x, a) ◦ f(x, b) ⇐⇒ f distributes over ◦

Background 1.4 (isomorphism) An isomorphism de-
scribes a bijective homomorphism:

• Homomorphism describes a structure-preserving
map between two algebraic structures of the same type:

– Algebraic structure describes a set with addi-
tional properties – e.g., an additive group over N,
a ring of integers modulo x, etc.

– Two structures of the same type refers to struc-
tures with the same name (i.e., class of property) –
e.g., two groups, two rings, etc.

– A structure-preserving map f between two struc-
tures intuitively describes a structure such that, for
properties p ∈ X, q ∈ Y between same-type struc-
tures X,Y , any tuples Xn ∈ p accepted by p (e.g.,
3 + 5 = 8 =⇒ (3, 5, 8) ∈ R.(+)) satisfies
map(f,Xn) ∈ q.

• Bijection describes a 1-to-1 correspondence between el-
ements of two sets – i.e., invertible.

2 Semantic Equivalences
Background 2.1 (lattice) A lattice describes a real coordi-
nate space Rn that satisfies:

• Addition / subtraction between two points always pro-
duce another point in lattice – i.e., closed under addition
/ subtraction.

• Lattice points are separated by bounded distances in some
range (0,max].

Define a lattice over which semantic equivalence relations
for spec. and impl. verification is defined.

Background 2.2 (reflexivity)

∀x ∈ X : x ◦ x ⇐⇒ ◦ reflexive on X

Background 2.3 (symmetry)

∀x, y ∈ X :
x ◦ y
y ◦ x ⇐⇒ ◦ symmetric on X

Background 2.4 (transitivity)

∀x, y, z ∈ X :
x ◦ y y ◦ z

x ◦ z ⇐⇒ ◦ transitive on X

1

Background 2.5 (equivalence relation) Equivalence
relation on set X satisfies reflexivity, symmetry, and transi-
tivity on X.

Definition 2.1 (discrimination measure) One equiva-
lence relation ≡ is finer / more discriminating than an-
other ∼ if each ≡-eq. class is a subset of a ∼-eq. class. In
other words,

p ≡ q =⇒ p ∼ q

⇐⇒ ≡ finer than ∼

In other words, ≡ creates finer partitions on its domain
compared to ∼.

Trace Equivalence

Definition 2.2 (path) A path of a process p is an alternat-
ing sequence of states and transitions starting from state p. It
can be infinite or ending in a state.

A path is complete if it is either infinite or ends in a state
where no further transitions are possible – a maximal path.

Definition 2.3 (complete trace) A complete trace of
process p is the sequence of labels of transitions in a complete
path.

The set of finite complete traces of process p is denoted as
CT fin(p), while the set of all finite/infinite complete traces of
p is CT∞(p) – aka. CT (p) from now on.

Example 2.1 (CT∞)

CT∞(a.(ε+ b.δ)) = {a✓, ab}

Definition 2.4 (partial trace) Likewise, a partial trace of
a process p is the sequence of labels of transitions in any partial
path.

We also likewise define PT fin(p) and PT∞(p) for some
process p. Define PT (p) as PT fin(p).

Definition 2.5 (=PT) Processes p, q are partial trace
equivalent (p =PT q) if they have the same partial traces:

p =PT q ⇐⇒ PT (p) = PT (q)

Mirroring the differences between PT fin and PT∞, define
finitary partial trace equivalence (=PT fin) and infinitary
partial trace equivalence (=PT∞).

Definition 2.6 (=CT) Processes p, q are complete trace
equivalent (p =CT q) if moreover they have the same com-
plete traces:

p =CT q ⇐⇒ CT (p) = CT (q)

Mirroring the differences between CT fin and CT∞, define
finitary complete trace equivalence (=CT fin) and infini-
tary complete trace equivalence (=CT∞).

Weak Equivalences and τ-actions

Definition 2.7 (strong equivalence) A strong equiva-
lence relation treats τ like any other (observable) action.

We assume above definitions for e.g., =PT to be assuming
strong equivalence.

Definition 2.8 (weak equivalence) In its mirror case, a
weak equivalence treats τ as if it is omitted from the input
processes.

We additionally define weak variants of the above 4 equiv-
alences: =WPT fin , =WPT∞ , =WCT fin , =WCT∞ .

Bisimulation Equivalence

Definition 2.9 (bisimulation) Let A,P define the actions
and predicates of an LTS (in addition to states, etc.). A
bisimulation is a binary relation ◦ ⊆ S × S satisfying:

• s ◦ t =⇒ (∀p ∈ P : s |= p ⇐⇒ t |= p)

• s ◦ t ∧ (∃a ∈ A : s
a−→ s

′
) =⇒ (∃t′ : t a−→ t

′
) ∧ s

′ ◦ t′

• s ◦ t ∧ (∃a ∈ A : t
a−→ t

′
) =⇒ (∃s′

: s
a−→ s

′
) ∧ s

′ ◦ t′

Bisimulation (aka. bisimulation equivalence) is an
equivalence relation. In general, bisimulation differentiates
branching structure of processes.

Definition 2.10 (bisimilarity) Two states s, t are bisimilar
(s↔t) if such a bisimulation ◦ exists between s, t.

Definition 2.11 (branching bisimulation) Given A,P
upon LTS, weaken bisimulation as follows: a branching
bisumlation is a binary relation ◦ ⊆ S × S satisfying:

1. s ◦ t ∧ (∃p ∈ P : s |= p) =⇒ ∃t1 : t⇝ t1 |= p ∧ s ◦ t1

2. s ◦ t ∧ (∃p ∈ P : t |= p) =⇒ ∃s1 : s⇝ s1 |= p ∧ s1 ◦ t

3.
s ◦ t ∧ (∃a ∈ Aτ : s

a−→ s
′
)

=⇒ ∃t1, t2, t
′
: t⇝ t1

(a)−−→ t2 = t
′
∧ s ◦ t1 ∧ s

′
◦ t

′

4.
s ◦ t ∧ (∃a ∈ Aτ : t

a−→ t
′
)

=⇒ ∃s1, s2, s
′
: s⇝ s1

(a)−−→ s2 = s
′
∧ s1 ◦ t ∧ s

′
◦ t

′

where:

•
s⇝ s

′

⇐⇒ ∃n ≥ 0 : ∃s0, . . . , sn : s = s0
τ−→ . . .

τ−→ sn = s
′

• Aτ := A ∪ {τ}

• s
(a)−−→ s

′
:=

{
s

a−→ s
′

if a ∈ A

s
τ−→ s

′ ∨ s = s
′

if a = τ

Two processes p, q are branching bisimilar (p↔bt) if such a
binary relation ◦ exists.

Definition 2.12 (delay bisimulation) Given ↔b, drop re-
quirements s ◦ t1 and s1 ◦ t, thus producing ↔d.

Definition 2.13 (weak bisimulation) Given ↔b,

• Drop requirements s ◦ t1, s1 ◦ t;

• Relax t2 = t
′
and s2 = s

′
to t2 ⇝ t

′
and s2 ⇝ s

′
, respec-

tively.

Thus producing ↔w.

Language Equivalence This paragraph is moved here for
ergonomics.

Definition 2.14 (language equivalence) Processes p, q are
language equivalent if they have the same traces leading to
terminating states – i.e., equal subset of terminating partial
traces.

Intuitively (and indeed) this is coarser than partial trace
equivalence.

Overview: The Hasse Diagram . . .

2

3 CCS; SOS

CCS Define the set of operations and semantics:

• 0 (inaction):

0 represents a graph with 1 (initial) state, 0 transitions.

• a, ā (complementary actions):

Complementary actions are assumed to communicate /
synchronize with one another.

• a.P (action prefix) for each action a, process P , which:

1. Define new initial state i.

2. Creates transition i
a−→ IP .

• P + Q (summation / choice / alternative composition),
where:

– Define new initial state root.

– States(P +Q) := States(P) ∪ States(Q) ∪ {root}

– Replace all IP
a−→ s with root

a−→ s.

– Replace all IQ
a−→ s with root

a−→ s.

• P |Q (parallel composition).

This takes the cartesian product of the states of P,Q,
such that:

– s
a−→ s

′ ∈ P =⇒ ∀t ∈ Q : (s, t)
a−→ (s

′
, t)

– t
a−→ t

′ ∈ Q =⇒ ∀s ∈ P : (s, t)
a−→ (s, t

′
)

– (s
a−→ s

′ ∈ P) ∧ (t
ā−→ t

′ ∈ Q) =⇒ (s, t)
τ−→ (s

′
, t

′
)

Note that CCS adheres strictly to a handshaking
communication format – this differs from ACP which
gives greater leeway to implementation, via the use of γ
operator.

• P\a (restriction) for each action a.

This produces copy of P such that all actions a, ā are
omitted. This is useful to remove unsuccessful commu-
nication.

• P [f] (relabelling) for each function f : A→ A.

This replaces each label a, ā by f(a), f(a).

Recursion

Definition 3.1 (process names and expressions)
Suppose we bind names X,Y, Z, . . . to some expression in
the CCS language:

X = PX

Here, PX represents ANY expression in the language, possibly
including X.

It is trivial to see this can cause recursive definitions:

X = a.X

Definition 3.2 (recursive specification) Define recur-
sive specification as partial function s : X → E:

• X: recursion variables.

• E: recursion equations of form x = Px.

In general, recursive spec.s are written as follows:

⟨x|s⟩

which reads as “process x satisfying equation s”.

Definition 3.3 (guarded recursion) A recursion is
guarded if each occurrence of a process name in PX occurs
within the scope of a subexpression a.P

′

X .
Think of it as being unwind-able such that progress is guar-

anteed.

Structural Operational Semantics (CCS)

a.E
a−→ E

Ej
a−→ E

′

j∑
i∈I Ei

a−→ E
′

j

(j ∈ I)

E
a−→ E

′

E|F a−→ E
′ |F

E
a−→ E

′
F

a−→ F
′

E|F τ−→ E
′ |F ′

E
a−→ E

′
a /∈ L ∪ L

E\L a−→ E
′\L

E
a−→ E

′

E[f]
f(a)−−−→ E

′
[f]

4 Equational Axiomisation
Congurence If an equivalence relation is a congurence for
an operator – i.e., an operator is compositional for the equiv-
alence – then there exists a sort of isomorphism detailed as
follows:

Definition 4.1 (congurence) An equivalence ∼ is a con-
gruence for a language L if:

∀C[] ∈ L : P ∼ Q =⇒ C[P] ∼ C[Q]

where:

• C[] (context) represents a L-expression with a hole in it,
plugged (e.g., with P) as C[P].

For example, let P = a.[]:

P = Q

a.P = a.Q

Equivalently, we can say that CCP.(.) is compositional under
equality (=).

Example 4.1 (=CT and ∂H) This is a counterexample for
showing why =CT is NOT a congurence over ACP. Obviously:

a.b+ a.c =CT a.(b+ c)

However:

∂{c}(a.b+ a.c) ̸=CT ∂{c}(a.(b+ c))

Definition 4.2 (congurence closure) A congurence clo-
sure ∼c of ∼ wrt. language L is defined by:

P ∼c Q ⇐⇒ ∀C[] ∈ L : C[P] ∼ C[Q]

Equational Axiomisation In terms of e.g., real addition
we describe the operator as possessing e.g., associativity and
commutativity, which in turn allows us to do some transfor-
mation during analysis, etc.

Same goes for operators in e.g, CCS:

(P +Q) +R = P + (Q+R) (associativity)
P +Q = Q+ P (commutativity)

P + P = P (idempotence)
P + 0 = P (0 as neutral element of +)

Definition 4.3 (CCS: expansion theorem) Suppose:

P :=
∑
i∈I

ai.Pi

Q :=
∑
j∈J

bi.Qj

3

Then,

P |Q =
∑
i∈I

ai(Pi|Q)

+
∑

i∈I,j∈J

τ(Pi|Qj) (given ai = bj)

+
∑
j∈J

bi(P |Qj)

Expressions of the form
∑

a.P are aka. head normal
form.

Definition 4.4 (Recursive Definition Principle)

i ∈ [1, n] : ⟨Xi|E⟩ ∈ Expr(X1 := ⟨X1|E⟩, . . . , Xn := ⟨Xn|E⟩)

Basically, some series of expressions for X1, . . . , Xn exists
as solution for E.

Definition 4.5 (Recursive Specification Principle) If
there exists

i ∈ [1, n] : yi ← Expr(y1, . . . , yn)

then:
i ∈ [1, n] : yi = ⟨Xi|E⟩

In other words, any y1...n that exists is the sole solution for
E modulo bisimulation equivalence.

Rooted Bisimilarity We note that depending on seman-
tics of L, equivalences may (and in fact likely) fail to be a
congurence over L. This also is the case for e.g., branching
bisimilarity: τ.a =BB a but τ.a+ b ̸=BB a+ b.

ACP and CCS fixes this by changing the equivalence oper-
ator.

Definition 4.6 (Rooted Branching Bisimilarity)

P =rBB Q ⇐⇒ (P
a−→ P

′
=⇒ Q

a−→ Q
′
∧ P

′
=BB Q

′
) ∧

(Q
a−→ Q

′
=⇒ P

a−→ P
′
∧ P

′
=BB Q

′
)

Definition 4.7 (Rooted Weak Bisimilarity)

P =rWB Q ⇐⇒ (P
a−→ P

′
=⇒ Q

a−→ Q
′
∧ P

′
=WB Q

′
) ∧

(Q
a−→ Q

′
=⇒ P

a−→ P
′
∧ P

′
=WB Q

′
)

4

	LTS; ACP
	Semantic Equivalences
	CCS; SOS
	Equational Axiomisation

