\documentclass[99-notes-packed.tex]{subfiles} \begin{document} \paragraph*{LTL} Let $\phi, \psi$ be LTL expressions, $p \in AP$ an atomic predicate, $\rightarrow^\ast$ indicating 0 or more steps (like regex): \begin{align*} \phi, \psi \Coloneqq&\ p\ |\ \top\ |\ \bot\ |\ \phi \wedge \psi\ |\ \phi \vee \psi\ |\ \neg \phi\ |\ \phi \implies \psi \\ |&\ X \phi: \pi \models X \phi \iff \exists {\pi}^{'}: \pi \rightarrow {\pi}^{'} \models \phi \\ |&\ F \phi: \pi \models F \phi \iff \exists {\pi}^{'}: \pi \rightarrow^\ast {\pi}^{'} \models \phi \\ |&\ G \phi: \pi \models G \phi \iff \forall {\pi}^{'}: (\pi \rightarrow^\ast {\pi}^{'}) \implies ({\pi}^{'} \models \phi) \\ |&\ \phi U \psi: \pi_0 \models \phi U \psi \\ & \iff \exists \pi_0 \rightarrow^\ast P \models \psi: \forall \pi_i \in \pi_0 \rightarrow^\ast \pi_N \rightarrow \Pi: \pi_i \models \phi \\ |&\ \phi W \psi: \pi \models \phi W \psi \iff \pi \models (\phi U \psi) \vee (G \phi) \end{align*} \paragraph*{CTL} Orthogonally (in terms of expressibility), CTL prefixes all $X | F | G | U$ operators with temporal signifiers: \begin{align*} A \sim \forall&:\ \textrm{for all paths} \\ E \sim \exists&:\ \textrm{exists some path} \end{align*} \begin{example}[incomparability of CTL, LTL] No LTL equivalent exists for CTL formula $AG(EF a)$. Likewise, no CTL equivalent exists for LTL formula $F(G a)$. \end{example} \paragraph*{Kripke Structure} is an alternative means of representing a transition system. Let $AP$ be a set of atomic predicates. A Kripke structure over $AP$ is a tuple $(S, \rightarrowtriangle, \models)$ where: \begin{itemize} \item $S$: set of state. \item $\rightarrowtriangle \subseteq S \times S$: transition relation. \item $\models \subseteq S \times AP$: state-predicate mapping. \end{itemize} LTL and CTL operate upon Kripke structures. A state $s \models \phi$ if for all paths incident from $s$, each path satisfies $\phi$. \paragraph*{LTS-Kripke Translation} A translation system $\eta$ maps states in LTSs to states in Kripke structures. This allows us to perform LTL/CTL validation on LTS: \begin{equation*} P \models_{\eta} \phi \iff \eta(P) \models \phi \end{equation*} \begin{definition}[De Nicola-Vaandrager Translation] The \textbf{DV-translation} translates process graphs into Kripke structures. Let the process graph be defineed as $(S, I, \rightarrowtriangle)$, as was the case for LTS. The associated Kripke structure is $((S^{'}, I), \rightarrowtriangle^{'}, \models)$, where: \begin{align*} S^{'} \coloneqq& S \cup \{[s, a, t] \in \rightarrowtriangle | a \ne \tau\} \\ \rightarrowtriangle^{'} \coloneqq& \{(s, [s, a, t]), ([s, a, t], t) | [s, a, t] \in S^{'}\} \\ \cup& \{(s, t) | (s, \tau, t) \in \rightarrowtriangle \} \end{align*} In short, we create new states out of transitions due to visible actions, and create linkages accordingly. \end{definition} \begin{theorem} Processes $P, Q$ satisfy the same LTL formulas if: \begin{equation*} P =_{CT}^{\infty} Q \end{equation*} Moreover, finitely-branching processes $P, Q$ satisfies \textbf{iff}. \end{theorem} \begin{theorem} Processes $P, Q$ satisfy the same $LTL_{-X}$ formulas (i.e., LTL without $X$) if: \begin{equation*} P =_{WCT}^{\infty} Q \end{equation*} \end{theorem} \begin{theorem} Processes $P, Q$ satisfy the same CTL formulas if: \begin{equation*} P =_{B} Q \end{equation*} Moreover, finitely-branching processes satisfies \textbf{iff}. On the otherhand, when CTL is expanded to $CTL^{\infty}$ (i.e., CTL with infinite $\wedge$), all processes also satisfy \textbf{iff}. \end{theorem} \begin{theorem} A \textbf{divergence-free} process is one where no reachable state $p$ has $p \xrightarrow{\tau^\infty} !$ -- infinite $\tau$s. Two \textbf{divergence-free} processes $P, Q$ satisfy the same ${CTL}_{-X}$ formulas if: \begin{equation*} P =_{BB} Q \end{equation*} Moreover, when CTL is adjusted to ${CTL}^{\infty}_{-X}$, we have \textbf{iff}. Same goes if $P, Q$ are additionall finitely branching. \end{theorem} \end{document}