
1 LTS; ACP

LTS and Process Graphs Both specifications and imple-
mentations could be represented by models of concurrency , for
example labelled transition systems (LTS) or process graphs.

Definition 1.1 (Process Graph) A process graph is a triple
(S, I,_) such that:

• S a set of states;

• I ∈ S an initial state;

• _ a set of triples (s, a, t) each describing a (named) re-
lation S → S:

– s, t ∈ S;

– a ∈ Act – a set of actions.

Definition 1.2 (LTS) Same as process graph, except without
an initial state. Sometimes used synonymously with process
graphs bc. mathematicians are evil.

Alternatively, one may use process algebraic expressions to
formally represent spec.s and impl.s, for example using CCS
(Calculus of Communicating Systems), CSP (Communicating
Sequential Processes), and ACP (Algebra of Communicating
Processes). Each semantics is of different expressive power.

ACP Define the set of operations:

• ε (successful termination – ACPε extension).

• δ (deadlock).

• a (action constant) for each action a ∈ Act.
Each a describe a visible action – τ /∈ Act;

• P ·Q (sequential composition between processes P,Q)

• P +Q (summation / choice / alternative composition);

• P ||Q (parallel composition).

• ∂H(P) (restriction / encapsulation).

Given set of (visible) actions H, this removes ∀a ∈ H in
P .

Practically this is often used after defining γ(a, b) to en-
force sync – via removing non-synced a.b or b.a behaviors;

• τI(P) (abstraction – ACPτ extension).

Given set of (visible) actions I, this converts ∀a ∈ I into
τ in P .

A τ action is non-observable – this will be significant
for describing traces & equivalence relations.

• γ : A×A→ A (partial communication function).

For example, γ(a, b) defines new (synchronized) visible
action alongside a, b.

We further define the following transition rules (omitting
commutative equivalents). First, transition rules for basic pro-
cess algebra wrt. termination, sequential composition, and
choice:

a
a−→ ε

a
a−→ ε

a+ b
a−→ ε

a
a−→ ε

a · b a−→ b

a
a−→ a

′

a+ b
a−→ a

′

a
a−→ a

′

a · b a−→ a
′ · b

Then, for parallel processes which may or may not commu-
nicate:

a
a−→ ε

a||b a−→ b

a
a−→ a

′

a||b a−→ a
′ ||b

a
a−→ ε b

b−→ ε

a||b γ(a,b)−−−−→ ε

a
a−→ a

′
b

b−→ ε

a||b γ(a,b)−−−−→ a
′

a
a−→ ε b

b−→ b
′

a||b γ(a,b)−−−−→ b
′

a
a−→ a

′
b

b−→ b
′

a||b γ(a,b)−−−−→ a
′ ||b′

Furthermore, for encapsulation ∂H :

a
x−→ ε

∂H(a)
x−→ ε

x /∈ H
a

x−→ a
′

∂H(a)
x−→ ∂H(a

′
)
x /∈ H

This is to say, ∂H(a) can execute all transitions of a that are
also not in H.

Finally, deadlocks does not display any behavior – that
is, a δ process cannot transition to any other states no matter
what (though obviously as a constituent part of e.g., a parallel
process the other concurrent constituent can still run).

Background 1.1 (commutativity)

f(a, b) = f(b, a) ⇐⇒ f commutative

Background 1.2 (associativity)

(a ◦ b) ◦ c = a ◦ (b ◦ c) ⇐⇒ ◦ associative

Background 1.3 (distributivity)

f(x, a ◦ b) = f(x, a) ◦ f(x, b) ⇐⇒ f distributes over ◦

Background 1.4 (isomorphism) An isomorphism de-
scribes a bijective homomorphism:

• Homomorphism describes a structure-preserving
map between two algebraic structures of the same type:

– Algebraic structure describes a set with addi-
tional properties – e.g., an additive group over N,
a ring of integers modulo x, etc.

– Two structures of the same type refers to struc-
tures with the same name (i.e., class of property) –
e.g., two groups, two rings, etc.

– A structure-preserving map f between two struc-
tures intuitively describes a structure such that, for
properties p ∈ X, q ∈ Y between same-type struc-
tures X,Y , any tuples Xn ∈ p accepted by p (e.g.,
3 + 5 = 8 =⇒ (3, 5, 8) ∈ R.(+)) satisfies
map(f,Xn) ∈ q.

• Bijection describes a 1-to-1 correspondence between el-
ements of two sets – i.e., invertible.

2 Semantic Equivalences
Background 2.1 (lattice) A lattice describes a real coordi-
nate space Rn that satisfies:

• Addition / subtraction between two points always pro-
duce another point in lattice – i.e., closed under addition
/ subtraction.

• Lattice points are separated by bounded distances in some
range (0,max].

Define a lattice over which semantic equivalence relations
for spec. and impl. verification is defined.

Background 2.2 (reflexivity)

∀x ∈ X : x ◦ x ⇐⇒ ◦ reflexive on X

Background 2.3 (symmetry)

∀x, y ∈ X :
x ◦ y
y ◦ x ⇐⇒ ◦ symmetric on X

Background 2.4 (transitivity)

∀x, y, z ∈ X :
x ◦ y y ◦ z

x ◦ z ⇐⇒ ◦ transitive on X

1

Background 2.5 (equivalence relation) Equivalence
relation on set X satisfies reflexivity, symmetry, and transi-
tivity on X.

Definition 2.1 (discrimination measure) One equiva-
lence relation ≡ is finer / more discriminating than an-
other ∼ if each ≡-eq. class is a subset of a ∼-eq. class. In
other words,

p ≡ q =⇒ p ∼ q
⇐⇒ ≡ finer than ∼

In other words, ≡ creates finer partitions on its domain
compared to ∼.

Trace Equivalence

Definition 2.2 (path) A path of a process p is an alternat-
ing sequence of states and transitions starting from state p. It
can be infinite or ending in a state.

A path is complete if it is either infinite or ends in a state
where no further transitions are possible – a maximal path.

Definition 2.3 (complete trace) A complete trace of
process p is the sequence of labels of transitions in a complete
path.

The set of finite complete traces of process p is denoted as
CT fin(p), while the set of all finite/infinite complete traces of
p is CT∞(p) – aka. CT (p) from now on.

Example 2.1 (CT∞)

CT∞(a.(ε+ b.δ)) = {a✓, ab}

Definition 2.4 (partial trace) Likewise, a partial trace of
a process p is the sequence of labels of transitions in any partial
path.

We also likewise define PT fin(p) and PT∞(p) for some
process p. Define PT (p) as PT fin(p).

Definition 2.5 (=PT) Processes p, q are partial trace
equivalent (p =PT q) if they have the same partial traces:

p =PT q ⇐⇒ PT (p) = PT (q)

Mirroring the differences between PT fin and PT∞, define
finitary partial trace equivalence (=PT fin) and infinitary
partial trace equivalence (=PT∞).

Definition 2.6 (=CT) Processes p, q are complete trace
equivalent (p =CT q) if moreover they have the same com-
plete traces:

p =CT q ⇐⇒ CT (p) = CT (q)

Mirroring the differences between CT fin and CT∞, define
finitary complete trace equivalence (=CT fin) and infini-
tary complete trace equivalence (=CT∞).

Weak Equivalences and τ-actions

Definition 2.7 (strong equivalence) A strong equiva-
lence relation treats τ like any other (observable) action.

We assume above definitions for e.g., =PT to be assuming
strong equivalence.

Definition 2.8 (weak equivalence) In its mirror case, a
weak equivalence treats τ as if it is omitted from the input
processes.

We additionally define weak variants of the above 4 equiv-
alences: =WPT fin , =WPT∞ , =WCT fin , =WCT∞ .

Bisimulation Equivalence

Definition 2.9 (bisimulation) Let A,P define the actions
and predicates of an LTS (in addition to states, etc.). A
bisimulation is a binary relation ◦ ⊆ S × S satisfying:

• s ◦ t =⇒ (∀p ∈ P : s |= p ⇐⇒ t |= p)

• s ◦ t ∧ (∃a ∈ A : s
a−→ s

′
) =⇒ (∃t′ : t a−→ t

′
) ∧ s′ ◦ t′

• s ◦ t ∧ (∃a ∈ A : t
a−→ t

′
) =⇒ (∃s′ : s a−→ s

′
) ∧ s′ ◦ t′

Bisimulation (aka. bisimulation equivalence) is an
equivalence relation. In general, bisimulation differentiates
branching structure of processes.

Definition 2.10 (bisimilarity) Two states s, t are bisimilar
(s↔t) if such a bisimulation ◦ exists between s, t.

Definition 2.11 (branching bisimulation) Given A,P
upon LTS, weaken bisimulation as follows: a branching
bisumlation is a binary relation ◦ ⊆ S × S satisfying:

1. s ◦ t ∧ (∃p ∈ P : s |= p) =⇒ ∃t1 : t⇝ t1 |= p ∧ s ◦ t1

2. s ◦ t ∧ (∃p ∈ P : t |= p) =⇒ ∃s1 : s⇝ s1 |= p ∧ s1 ◦ t

3.
s ◦ t ∧ (∃a ∈ Aτ : s

a−→ s
′
)

=⇒ ∃t1, t2, t
′
: t⇝ t1

(a)−−→ t2 = t
′
∧ s ◦ t1 ∧ s

′
◦ t

′

4.
s ◦ t ∧ (∃a ∈ Aτ : t

a−→ t
′
)

=⇒ ∃s1, s2, s
′
: s⇝ s1

(a)−−→ s2 = s
′
∧ s1 ◦ t ∧ s

′
◦ t

′

where:

•
s⇝ s

′

⇐⇒ ∃n ≥ 0 : ∃s0, . . . , sn : s = s0
τ−→ . . .

τ−→ sn = s
′

• Aτ := A ∪ {τ}

• s
(a)−−→ s

′
:=

{
s

a−→ s
′

if a ∈ A

s
τ−→ s

′ ∨ s = s
′

if a = τ

Two processes p, q are branching bisimilar (p↔bt) if such a
binary relation ◦ exists.

Definition 2.12 (delay bisimulation) Given ↔b, drop re-
quirements s ◦ t1 and s1 ◦ t, thus producing ↔d.

Definition 2.13 (weak bisimulation) Given ↔b,

• Drop requirements s ◦ t1, s1 ◦ t;

• Relax t2 = t
′
and s2 = s

′
to t2 ⇝ t

′
and s2 ⇝ s

′
, respec-

tively.

Thus producing ↔w.

Language Equivalence This paragraph is moved here for
ergonomics.

Definition 2.14 (language equivalence) Processes p, q are
language equivalent if they have the same traces leading to
terminating states – i.e., equal subset of terminating partial
traces.

Intuitively (and indeed) this is coarser than partial trace
equivalence.

Overview: The Hasse Diagram . . .

2

3 CCS; SOS

CCS Define the set of operations and semantics:

• 0 (inaction):

0 represents a graph with 1 (initial) state, 0 transitions.

• a, ā (complementary actions):

Complementary actions are assumed to communicate /
synchronize with one another.

• a.P (action prefix) for each action a, process P , which:

1. Define new initial state i.

2. Creates transition i
a−→ IP .

• P + Q (summation / choice / alternative composition),
where:

– Define new initial state root.

– States(P +Q) := States(P) ∪ States(Q) ∪ {root}

– Replace all IP
a−→ s with root

a−→ s.

– Replace all IQ
a−→ s with root

a−→ s.

• P |Q (parallel composition).

This takes the cartesian product of the states of P,Q,
such that:

– s
a−→ s

′ ∈ P =⇒ ∀t ∈ Q : (s, t)
a−→ (s

′
, t)

– t
a−→ t

′ ∈ Q =⇒ ∀s ∈ P : (s, t)
a−→ (s, t

′
)

– (s
a−→ s

′ ∈ P) ∧ (t
ā−→ t

′ ∈ Q) =⇒ (s, t)
τ−→ (s

′
, t

′
)

Note that CCS adheres strictly to a handshaking
communication format – this differs from ACP which
gives greater leeway to implementation, via the use of γ
operator.

• P\a (restriction) for each action a.

This produces copy of P such that all actions a, ā are
omitted. This is useful to remove unsuccessful commu-
nication.

• P [f] (relabelling) for each function f : A→ A.

This replaces each label a, ā by f(a), f(a).

Recursion

Definition 3.1 (process names and expressions)
Suppose we bind names X,Y, Z, . . . to some expression in
the CCS language:

X = PX

Here, PX represents ANY expression in the language, possibly
including X.

It is trivial to see this can cause recursive definitions:

X = a.X

Definition 3.2 (recursive specification) Define recur-
sive specification as partial function s : X → E:

• X: recursion variables.

• E: recursion equations of form x = Px.

In general, recursive spec.s are written as follows:

⟨x|s⟩

which reads as “process x satisfying equation s”.

Definition 3.3 (guarded recursion) A recursion is
guarded if each occurrence of a process name in PX occurs
within the scope of a subexpression a.P

′

X .
Think of it as being unwind-able such that progress is guar-

anteed.

Structural Operational Semantics (CCS)

a.E
a−→ E

Ej
a−→ E

′

j∑
i∈I Ei

a−→ E
′

j

(j ∈ I)

E
a−→ E

′

E|F a−→ E
′ |F

E
a−→ E

′
F

a−→ F
′

E|F τ−→ E
′ |F ′

E
a−→ E

′
a /∈ L ∪ L

E\L a−→ E
′\L

E
a−→ E

′

E[f]
f(a)−−−→ E

′
[f]

4 Equational Axiomisation
Congurence If an equivalence relation is a congurence for
an operator – i.e., an operator is compositional for the equiv-
alence – then there exists a sort of isomorphism detailed as
follows:

Definition 4.1 (congurence) An equivalence ∼ is a con-
gruence for a language L if:

∀C[] ∈ L : P ∼ Q =⇒ C[P] ∼ C[Q]

where:

• C[] (context) represents a L-expression with a hole in it,
plugged (e.g., with P) as C[P].

For example, let P = a.[]:

P = Q

a.P = a.Q

Equivalently, we can say that CCP.(.) is compositional under
equality (=).

Example 4.1 (=CT and ∂H) This is a counterexample for
showing why =CT is NOT a congurence over ACP. Obviously:

a.b+ a.c =CT a.(b+ c)

However:

∂{c}(a.b+ a.c) ̸=CT ∂{c}(a.(b+ c))

Definition 4.2 (congurence closure) A congurence clo-
sure ∼c of ∼ wrt. language L is defined by:

P ∼c Q ⇐⇒ ∀C[] ∈ L : C[P] ∼ C[Q]

Equational Axiomisation In terms of e.g., real addition
we describe the operator as possessing e.g., associativity and
commutativity, which in turn allows us to do some transfor-
mation during analysis, etc.

Same goes for operators in e.g, CCS:

(P +Q) +R = P + (Q+R) (associativity)
P +Q = Q+ P (commutativity)
P + P = P (idempotence)
P + 0 = P (0 as neutral element of +)

Definition 4.3 (CCS: expansion theorem) Suppose:

P :=
∑

i∈I ai.Pi Q :=
∑

j∈J bi.Qj

Then,

P |Q =
∑
i∈I

ai(Pi|Q)

+
∑

i∈I,j∈J

τ(Pi|Qj) (given ai = bj)

+
∑
j∈J

bi(P |Qj)

Expressions of the form
∑
a.P are aka. head normal

form.

3

Definition 4.4 (Recursive Definition Principle)

i ∈ [1, n] : ⟨Xi|E⟩ ∈ Expr(X1 := ⟨X1|E⟩, . . . , Xn := ⟨Xn|E⟩)

Basically, some series of expressions for X1, . . . , Xn exists
as solution for E.

Definition 4.5 (Recursive Specification Principle) If
there exists

i ∈ [1, n] : yi ← Expr(y1, . . . , yn)

then:
i ∈ [1, n] : yi = ⟨Xi|E⟩

In other words, any y1...n that exists is the sole solution for
E modulo bisimulation equivalence.

Rooted Bisimilarity We note that depending on seman-
tics of L, equivalences may (and in fact likely) fail to be a
congurence over L. This also is the case for e.g., branching
bisimilarity: τ.a =BB a but τ.a+ b ̸=BB a+ b.

ACP and CCS fixes this by changing the equivalence oper-
ator. CSP fixes this by foregoing the + operator.

Definition 4.6 (Rooted Branching Bisimilarity)

P =rBB Q ⇐⇒ (P
a−→ P

′
=⇒ Q

a−→ Q
′
∧ P

′
=BB Q

′
) ∧

(Q
a−→ Q

′
=⇒ P

a−→ P
′
∧ P

′
=BB Q

′
)

=rBB is equivalent to branching bisimulation congruence
=c

BB over ACP.

Definition 4.7 (Rooted Weak Bisimilarity)

P =rWB Q ⇐⇒ (P
a−→ P

′
=⇒ Q

τ∗aτ∗−−−−→ Q
′
∧ P

′
=WB Q

′
) ∧

(Q
a−→ Q

′
=⇒ P

τ∗aτ∗−−−−→ P
′
∧ P

′
=WB Q

′
)

=rWB is equivalent to weak bisimulation congruence =c
WB

over CCS.

Definition 4.8 (Eq. axiomisation for rBB, rWB)
=rWB is axiomatised as follows:

a.τ.P = a.P (1)
τ.P = τ.P + P (2)

a.(τ.P +Q) = a.(τ.P +Q) + a.P (3)

=rBB is axiomatised as follows:

a.(τ.(P +Q) +Q) = a.(P +Q)

Strongly/Weakly Guarded Recursions Recall that a re-
cursive spec of the form e.g. X = a.(b + X) is guarded – X
exists as a subexpression of X – and are equivlent modulo
strong bisimilarity (viz. RSP).

On the other hand X = τ.X has solely equivalent solu-
tions modulo =B but not up to e.g. =rBB . This breaks
the equivalence lattice – we hence need a stronger concept of
unguardedness for =B .

Definition 4.9 (strong unguardedness) A strongly un-
guarded recursive specification is one where, for

X = Expr(X, . . .)

the recursive variable X occurs NOT in a subterm of the form:

a← A ∪ {τ} : a.P
′
, X ∈ P

′

as in, X is not guarded by ∀a ∈ A nor τ .
It turns out that RSP is sound modulo bisimula-

tion for all non-strongly-unguarded recursive specifi-
cations.

Definition 4.10 (weak unguardedness) Likewise, a
weakly unguarded recursive specification is one where re-
cursive variable X is NOT guarded by ∀a ∈ A only.

Note that strong unguardedness entails weak unguarded-
ness.

RSP is sound modulo weak/branching bisimulation
for all non-weakly-unguarded recursive specifications.

5 CSP; SOS
CSP Introduce the following operations:

1. 0 or STOP (inaction).

Likewise CCS, a graph with 1 (initial) state, 0 transi-
tions.

2. a.P or a→ P (action prefix) for ∀a ∈ A.

Likewise CCS.

3. P□Q (external choice).

Semantically it is similar to parallel composition without
synchronization, where:

• Prior to “choice”, one of the two actions might hap-
pen between the processes.

• After one of the action happens, only the choiced
process may occur at runtime.

4. P ⊓Q (internal choice):

CSP[P ⊓Q] ≡ CCS[τ.P + τ.Q]

5. P ||SQ (parallel composition) with enforced synchroniza-
tion over S ⊆ A. Semantically speaking:

• States(P ||SQ) := States(P)× States(Q)

• (s, t)
a−→ (s

′
, t) if (a /∈ S) ∧ (s

a−→ s
′ ∈ P)

• (s, t)
a−→ (s, t

′
) if (a /∈ S) ∧ (t

a−→ t
′ ∈ Q)

• (s, t)
a−→ (s

′
, t

′
) if (a ∈ S)∧ (s a−→ s

′ ∈ P)∧ (t a−→ t
′ ∈

Q)

6. P/a (concealment).
Like CCS, rename a into τ .

7. P [f] (renaming) for f ∈ (A→ A)

Likewise CCS.

Weak and branching bisimulation are congurences for CSP.

GSOS As a general form over languages, GSOS describes a
transition rule of the following form: define

• Σ be the collection of function symbols wrt. a language.

• arity : Σ → N a function exposing the arity of the func-
tion symbol in question.

then, under GSOS semantics, the language could be expressed
as follows:

xi
a−→ yi, . . . (f ∈ Σ, i ∈ [1, arity(f)], yi /∈ args(f))

f(x1, . . . , xarity(f))
a−→ Expr(x1, . . . , xarity(f), yi, . . .)

It is the generalization of SOS rules we have covered earlier.

6 Hennessy-Miller Logic
HML Let φ,ψ be HML expressions:

φ,ψ ::= ⊤ | ⊥ | ¬φ | φ ∧ ψ | φ ∨ ψ | ⟨A⟩Φ | [A]Φ

where Φ denotes predicates.
We omit explanation of familiar syntactic elements from

FOL. Besides them:

P |= [A]Φ ⇐⇒ ∀Q : (∃a ∈ A : P
a−→ Q) =⇒ (Q |= Φ)

P |= ⟨A⟩Φ ⇐⇒ ∃Q : ∃a ∈ A : P
a−→ Q ∧Q |= Φ

Example 6.1 (deadlock in HML) Given set of all actions
A, a process P deadlocks if this holds:

P |= [A]⊥

4

7 Preorder and Simulation

Preorder Remember equivalence? Meet its lesser sibling,
preorder:

Definition 7.1 (Preorder) A preorder (⊑) denotes a
transitive, reflexive relation on a set.

Crucially, preorder is NOT symmetrical compared to equiv-
alence.

For example, ≤ is a preorder over R (in fact, a partial-
order).

We define preorders in relation of equivalences already de-
fined in this course. For example, partial trace preorder ⊑PT :

P ⊑PT Q ⇐⇒ PT (P) ⊇ PT (Q)

where Q becomes a refinement of P – all properties of P
must hold for Q, while Q can hold more properties than P .

In general, we want to prove:

Spec ⊑∼ Impl

Definition 7.2 (Kernel) For each preorder ⊑∼ there exists
an associated equivalence relation ≡∼:

P ≡ Q ⇐⇒ P ⊑ Q ∧Q ⊑ P

If this holds, P,Q are kernels of each other.

Simulation A simulation relation expresses a preorder be-
tween two processes P,Q such that:

P ⊑S Q ⇐⇒ ∀(P a−→ P
′
) : ∃(Q a−→ Q

′
) : P

′
⊑S Q

′

Using definitions for general preorders, define simulation
equivalence as follows:

P ≡S Q ⇐⇒ P ⊑S Q ∧Q ⊑S P

Example 7.1 (≡S vs. =B) Simulation equivalence is NOT
equivalent to bisimulation. Case in point:

P := a.b+ a.(b+ c)

Q := a.(b+ c)

8 LTL; CTL; Kripke Structure

LTL Let ϕ, ψ be LTL expressions, p ∈ AP an atomic predi-
cate, →∗ indicating 0 or more steps (like regex):

ϕ, ψ ::= p | ⊤ | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ϕ =⇒ ψ

| Xϕ : π |= Xϕ ⇐⇒ ∃π
′
: π → π

′
|= ϕ

| Fϕ : π |= Fϕ ⇐⇒ ∃π
′
: π →∗ π

′
|= ϕ

| Gϕ : π |= Gϕ ⇐⇒ ∀π
′
: (π →∗ π

′
) =⇒ (π

′
|= ϕ)

| ϕUψ : π0 |= ϕUψ

⇐⇒ ∃π0 →∗ P |= ψ : ∀πi ∈ π0 →∗ πN → Π : πi |= ϕ

| ϕWψ : π |= ϕWψ ⇐⇒ π |= (ϕUψ) ∨ (Gϕ)

CTL Orthogonally (in terms of expressibility), CTL prefixes
all X|F |G|U operators with temporal signifiers:

A ∼ ∀ : for all paths
E ∼ ∃ : exists some path

Example 8.1 (incomparability of CTL, LTL) No LTL
equivalent exists for CTL formula AG(EFa). Likewise, no
CTL equivalent exists for LTL formula F (Ga).

Kripke Structure is an alternative means of representing
a transition system. Let AP be a set of atomic predicates. A
Kripke structure over AP is a tuple (S,_, |=) where:

• S: set of state.

• _⊆ S × S: transition relation.

• |=⊆ S ×AP : state-predicate mapping.

LTL and CTL operate upon Kripke structures.
A state s |= ϕ if for all paths incident from s, each path

satisfies ϕ.

LTS-Kripke Translation A translation system η maps
states in LTSs to states in Kripke structures. This allows us
to perform LTL/CTL validation on LTS:

P |=η ϕ ⇐⇒ η(P) |= ϕ

Definition 8.1 (De Nicola-Vaandrager Translation)
The DV-translation translates process graphs into Kripke
structures. Let the process graph be defineed as (S, I,_), as
was the case for LTS.

The associated Kripke structure is ((S
′
, I),_

′
, |=), where:

S
′
:=S ∪ {[s, a, t] ∈_ |a ̸= τ}

_
′
:={(s, [s, a, t]), ([s, a, t], t)|[s, a, t] ∈ S

′
}

∪{(s, t)|(s, τ, t) ∈_}

In short, we create new states out of transitions due to vis-
ible actions, and create linkages accordingly.

Theorem 8.1 Processes P,Q satisfy the same LTL formulas
if:

P =∞
CT Q

Moreover, finitely-branching processes P,Q satisfies iff.

Theorem 8.2 Processes P,Q satisfy the same LTL−X for-
mulas (i.e., LTL without X) if:

P =∞
WCT Q

Theorem 8.3 Processes P,Q satisfy the same CTL formulas
if:

P =B Q

Moreover, finitely-branching processes satisfies iff.
On the otherhand, when CTL is expanded to CTL∞ (i.e.,

CTL with infinite ∧), all processes also satisfy iff.

Theorem 8.4 A divergence-free process is one where no
reachable state p has p τ∞

−−→! – infinite τs.
Two divergence-free processes P,Q satisfy the same

CTL−X formulas if:
P =BB Q

Moreover, when CTL is adjusted to CTL∞
−X , we have iff.

Same goes if P,Q are additionall finitely branching.

9 Petri Net; Concurrency Semantics
Concurrency Semantics Define the following semantics of
interest wrt. concurrency theory:

1. Interleaving Semantics: concurrent actions a, b occur
in one of the following orders:

• a; b

• b; a

2. Step Semantics: concurrent actions a, b occur in one
of the following orders:

5

• a; b

• b; a

• a||b (in parallel)

3. Interval Semantics: concurrent actions a, b occur in
continuous time, such that a, b may occur in parallel for
a subset of total runtime.

4. Partial-order (aka. Causal) Semantics: concurrent
actions a, b not only can occur in parallel for some contin-
uous time interval, but can also intersperse as unspecified
segments (e.g., OS scheduling).

Nevertheless, causal relationships between a, b, . . . are
preserved – a calling e.g. fork() will posit a partial or-
dering before the spawned task b, though the exact con-
currency behaviors leave much leeway to the OS sched-
uler.

Definition 9.1 (Pomset) A pomset (partial-ordered
multiset) defines a (E,<, l)-tuple where:

• E a set of “events” – corresponding to each occurrence of
action.

• < a partial-order of E such that ei happens before ej, or
incomparable, etc.

• l : E → A a mapping between events to their actions.

A normal trace thus becomes a totally ordered multiset of
actions, compared to a pomset representation.

Petri Net captures the dynamism within parallel systems.
It defines a (S, T, F, I)-tuple where:

• S, T define places and actions grouped in bipartite form.

• F ⊆ (S × T) ∪ (T × S) set of transitions.

• I : S → N (initial marking) defines the initial state of
control, via allocating tokens to initial states. Subse-
quent states of control is referred to as marking in gen-
eral.

Definition 9.2 (Control & Tokens) Petri nets encode con-
trol at runtime. A control simply refers to the state at which
the system is currently at. It is represented as a assignment of
tokens to each place in net i.e. a marking.

Progress, Justness, Fairness We define several properties
on concurrent systems to make claim they display good behav-
iors.

Definition 9.3 (Safety) A safety property defines that a
“bad” predicate ϕ would never hold – e.g., P |= G(¬ϕ).

Definition 9.4 (Liveness) A liveness property defines
that a “good” predicate ϕ would eventually hold – e.g., P |=
F (ϕ).

It’s easy to see that safety and liveness properties are
duo/convertible to each other – G(¬ϕ) ⇐⇒ ¬F (ϕ), after
all. Hence we can speak of them in common contexts.

Whether safety/liveness properties hold in a system de-
pends often on whether we make appropriate progress and
fairness assumptions (in increasing hierarchy):

Background 9.1 (Completeness Criteria) LTL is a
linear-time logic that specifies linear-time properties on
paths in a Kripke structure. For example, F (ϕ) really means
that, within each/a path, a state marked with proposition ϕ
eventually occurs within the path string.

We hence expand the satisfaction idea such that a process P
satisfies a LTL property φ under a completeness criterion
C:

P |=C φ ⇐⇒ ∀ path π ∈ P : π |= C =⇒ π |= φ

For example, C might refer to the assumption that a path
is infinite – deadlock-free, as a finite path occurs only if we
reach a state without outgoing transitions. This is often the de-
fault completeness criterion when unspecified – in which
case we simply use |= without superscript.

A completeness criterion D is stronger than C if:

{π | π ∈ path(P), π |= D} ⊂ {π | π ∈ path(P), π |= C}

We hence define the following completeness criteria in in-
creasing strength (or reverse implication chain):

Definition 9.5 (Progress) In a closed system (i.e., with-
out external influence of transition decisions), the progress
assumption assumes that we will not stay forever in a state
with an outgoing transition – i.e., a finite path is complete iff
it ends in a state without outgoing transitions.

To show this is weaker than weak fairness, simply show that
task T cannot occur whatsoever in last state of a non-progress
path (because it is enabled, but trivially not occurred – because
of non-progression past that state).

There is also justness but this was not covered in lecture.

Definition 9.6 (Weak Fairness) Define a task to be a set
of transitions in a Kripke structure (you can think of it as
a subprocedure in a program). Append the Kripke structure
(S,_, I) with a novel structure τ :

τ := Collection of tasks

A task T is enabled in state s ∈ S if there exists an out-
going transition from s that is also in T . T is perpetually
enabled on path π if it is enabled in every state of π (i.e.,
every state in π contains outgoing transition in T).

Orthogonally, if a T -transition exists in π then T occurs
in π.

A path π is hence weakly fair if it satisfies the following
LTL formula:

WF(T) := G[G(enabled(T)) =⇒ F (occurs(T))]

⇔ F (G(enabled(T))) =⇒ G(F (occurs(T)))

Read it in this way: if, after some s ∈ π, part of
T can always happen for s

′ ∈ π′
(i.e., perpetually

enabled), then at least some part of T will happen
in π

′
.

where predicates enabled, occurs follow above definition – a
state s is marked with enabled(T) iff T is enabled at state s i.e.
exists outgoing transition from s that is also in T .

Hence, define |=WF as:

P |=WF φ ⇐⇒ P |= [∧T∈τ (WF(T))] =⇒ φ

Definition 9.7 (Strong Fairness) A task T is relentlessly
enabled on π if for every suffix of π there exists a state s

′

where T is enabled (note the difference between perpetually en-
abled).

A path π is hence strongly fair if it satisfies the following
LTL formula:

SF(T) := G[GF (enabled(T)) =⇒ F (occurs(T))]

⇔ GF (enabled(T)) =⇒ GF (occurs(T))

In other words: if, after some s ∈ π, part of T will
always be available occasionally for some s

′ ∈ π
′

(i.e., relentlessly enabled), then some part of T will
happen in π

′
.

Likewise, define |=SF in mirror case of |=WF .

6

	LTS; ACP
	Semantic Equivalences
	CCS; SOS
	Equational Axiomisation
	CSP; SOS
	Hennessy-Miller Logic
	Preorder and Simulation
	LTL; CTL; Kripke Structure
	Petri Net; Concurrency Semantics

