

Specification vs. Implementation *Specification* describes what a system ought to satisfy and perform. A *formal specification*, in particular, is a **specification derived using formal methods that ensure the required properties of some problem at hand**. A formal specification of a distributed system often comes in (at least) 2 parts:

1. *Requirements imposed on the system* – i.e., a list of properties that the system should satisfy (e.g., safety / liveness properties).
2. *Operations of the system*, which describes the behavior (i.e., satisfiability of predicates) given interactions (e.g., effects of communication).

LTS and Process Graphs Both specifications and implementations could be represented by *models of concurrency*, for example *labelled transition systems (LTS)* or *process graphs*.

Definition 0.1 (Process Graph) A process graph is a triple (S, I, \rightarrow) such that:

- S a set of states;
- $I \in S$ an initial state;
- \rightarrow a set of triples (s, a, t) each describing a (named) relation $S \rightarrow S$:
 - $s, t \in S$;
 - $a \in \text{Act}$ – a set of actions.

Definition 0.2 (LTS) Same as process graph, except without an initial state. Sometimes used synonymously with process graphs bc. mathematicians are evil.

Alternatively, one may use *process algebraic expressions* to formally represent spec.s and impl.s, for example using *CCS* (*Calculus of Communicating Systems*), *CSP* (*Communicating Sequential Processes*), and *ACP* (*Algebra of Communicating Processes*). Each semantics is of different expressive power.

ACP Define the set of operations:

- ε (successful termination – ACP_ε extension).
- δ (deadlock).
- a (action constant) for each action $a \in \text{Act}$.

Each a describe a **visible action** – $\tau \notin \text{Act}$;

- $P \cdot Q$ (sequential composition between processes P, Q)
- $P + Q$ (summation / choice / alternative composition);
- $P \parallel Q$ (parallel composition).
- $\partial_H(P)$ (restriction / encapsulation).

Given set of (visible) actions H , this removes $\forall a \in H$ in P .

Practically this is often used after defining $\gamma(a, b)$ to enforce sync – via removing non-synced $a.b$ or $b.a$ behaviors;

- $\tau_I(P)$ (abstraction – ACP_τ extension).

Given set of (visible) actions I , this converts $\forall a \in I$ into τ in P .

A τ action is **non-observable** – this will be significant for describing traces & equivalence relations.

- $\gamma : A \times A \rightarrow A$ (partial communication function).

For example, $\gamma(a, b)$ defines new (synchronized) visible action alongside a, b .

We further define the following transition rules (omitting reflexive equivalents). First, transition rules for basic process algebra wrt. termination, sequential composition, and choice:

$$\begin{array}{c}
\frac{}{a \xrightarrow{a} \varepsilon} \quad \frac{a \xrightarrow{a} \varepsilon}{a + b \xrightarrow{a} \varepsilon} \quad \frac{a \xrightarrow{a} \varepsilon}{a \cdot b \xrightarrow{a} b} \\
\frac{}{a \xrightarrow{a'} a'} \quad \frac{a \xrightarrow{a} a'}{a \cdot b \xrightarrow{a} a' \cdot b}
\end{array}$$

Then,

Background 0.1 (commutativity)

$$f(a, b) = f(b, a) \iff f \text{ commutative}$$

Background 0.2 (associativity)

$$(a \circ b) \circ c = a \circ (b \circ c) \iff \circ \text{ associative}$$

Background 0.3