\documentclass[99-notes-packed.tex]{subfiles} \begin{document} % \paragraph*{Specification vs. Implementation} % \underbar{\textit{Specification}} describes what a system ought to satisfy and perform. \textbf{A \textit{formal specification}}, in particular, \textbf{is a specification derived using formal methods that ensure the required properties of some problem at hand}. A formal specification of a distributed system often comes in (at least) 2 parts: % \begin{enumerate} % \item \textbf{ % \textit{Requirements} imposed on the system -- i.e., a list of properties that the system should satisfy (e.g., safety / liveness properties). % \label{def.spec.requirements} % } % \item \textbf{ % \textit{Operations} of the system, which describes the behavior (i.e., satisfiability of predicates) given interactions (e.g., effects of communication). % \label{def.spec.operations} % } % \end{enumerate} % In total, a formal specification is then used to verify the following: % \begin{enumerate} % \item { % Guarantee that a description of a system really meets the requirements of the same system -- i.e., the specification is correct. % } % \item \textbf{ % Ensure that an \underbar{\textit{implementation}} satisfies the specification -- i.e., ensure that any correctness properties that hold for spec. also holds for impl. % } % \end{enumerate} \paragraph*{LTS and Process Graphs} Both specifications and implementations could be represented by \underbar{\textit{models of concurrency}}, for example \textit{labelled transition systems (LTS)} or \textit{process graphs}. \begin{definition}[Process Graph] A \textit{process graph} is a triple $(S, I, \rightarrowtriangle)$ such that: \begin{itemize} \item $S$ a set of states; \item $I \in S$ an \textit{initial state}; \item { $\rightarrowtriangle$ a set of triples $(s, a, t)$ each describing a (named) relation $S \rightarrow S$: \begin{itemize} \item $s, t \in S$; \item $a \in {Act}$ -- a set of actions. \end{itemize} } \end{itemize} \label{def.process-graph} \end{definition} \begin{definition}[LTS] Same as \hyperref[def.process-graph]{process graph}, except without an initial state. Sometimes used synonymously with process graphs bc. mathematicians are evil. \end{definition} Alternatively, one may use \textit{process algebraic expressions} to formally represent spec.s and impl.s, for example using \textit{CCS (Calculus of Communicating Systems)}, \textit{CSP (Communicating Sequential Processes)}, and \textit{ACP (Algebra of Communicating Processes)}. \underline{Each semantics is of different expressive power}. \paragraph*{ACP} Define the set of operations: \begin{itemize} \item { $\varepsilon$ (successful termination -- $\mathrm{ACP}_{\varepsilon}$ extension). } \item { $\delta$ (deadlock). } \item { $a$ (action constant) for each action $a \in {Act}$. Each $a$ describe a \textbf{visible action} -- $\tau \notin {Act}$; } \item { $P \cdot Q$ (sequential composition between processes $P, Q$) } \item { $P + Q$ (summation / choice / alternative composition); } \item { $P || Q$ (parallel composition). } \item { ${\partial}_{H}(P)$ (restriction / encapsulation). Given set of (visible) actions $H$, this removes $\forall a \in H$ in $P$. Practically this is often used after defining $\gamma(a, b)$ to enforce sync -- via removing non-synced $a.b$ or $b.a$ behaviors; } \item { ${\tau}_{I}(P)$ (abstraction -- $\mathrm{ACP}_{\tau}$ extension). Given set of (visible) actions $I$, this converts $\forall a \in I$ into $\tau$ in $P$. A $\tau$ action is \textbf{non-observable} -- this will be significant for describing traces \& equivalence relations. } \item { $\gamma: A \times A \rightarrow A$ (partial communication function). For example, $\gamma(a, b)$ defines new (synchronized) visible action alongside $a, b$. } \end{itemize} We further define the following transition rules (omitting commutative equivalents). First, transition rules for basic process algebra wrt. termination, sequential composition, and choice: \begin{center} \begin{tabular}{ccc} $ \begin{prooftree} \infer0{a \xrightarrow{a} \varepsilon} \end{prooftree} $ & $ \begin{prooftree} \hypo{a \xrightarrow{a} \varepsilon} \infer1{a + b \xrightarrow{a} \varepsilon} \end{prooftree} $ & $ \begin{prooftree} \hypo{a \xrightarrow{a} \varepsilon} \infer1{a \cdot b \xrightarrow{a} b} \end{prooftree} $ \\ \\ $ \begin{prooftree} \hypo{a \xrightarrow{a} a^{'}} \infer1{a + b \xrightarrow{a} a^{'}} \end{prooftree} $ & $ \begin{prooftree} \hypo{a \xrightarrow{a} a^{'}} \infer1{a \cdot b \xrightarrow{a} a^{'} \cdot b} \end{prooftree} $ & \\ \end{tabular} \end{center} Then, for parallel processes which may or may not communicate: \begin{center} \begin{tabular}{cc} $ \begin{prooftree} \hypo{a \xrightarrow{a} \varepsilon} \infer1{a || b \xrightarrow{a} b} \end{prooftree} $ & $ \begin{prooftree} \hypo{a \xrightarrow{a} a^{'}} \infer1{a || b \xrightarrow{a} a^{'} || b} \end{prooftree} $ \\ \\ $ \begin{prooftree} \hypo{a \xrightarrow{a} \varepsilon} \hypo{b \xrightarrow{b} \varepsilon} \infer2{a || b \xrightarrow{\gamma(a, b)} \varepsilon} \end{prooftree} $ & $ \begin{prooftree} \hypo{a \xrightarrow{a} a^{'}} \hypo{b \xrightarrow{b} \varepsilon} \infer2{a || b \xrightarrow{\gamma(a, b)} a^{'}} \end{prooftree} $ \\ \\ $ \begin{prooftree} \hypo{a \xrightarrow{a} \varepsilon} \hypo{b \xrightarrow{b} b^{'}} \infer2{a || b \xrightarrow{\gamma(a, b)} b^{'}} \end{prooftree} $ & $ \begin{prooftree} \hypo{a \xrightarrow{a} a^{'}} \hypo{b \xrightarrow{b} b^{'}} \infer2{a || b \xrightarrow{\gamma(a, b)} a^{'} || b^{'}} \end{prooftree} $ \\ \end{tabular} \end{center} Furthermore, for encapsulation ${\partial}_H$: \begin{center} \begin{tabular}{cc} $ \begin{prooftree} \hypo{a \xrightarrow{x} \varepsilon} \infer1{\partial_H(a) \xrightarrow{x} \varepsilon} \end{prooftree}\ x \notin H $ & $ \begin{prooftree} \hypo{a \xrightarrow{x} a^{'}} \infer1{{\partial}_H(a) \xrightarrow{x} {\partial}_H(a^{'})} \end{prooftree}\ x \notin H $ \\ \end{tabular} \end{center} This is to say, $\partial_H(a)$ can execute all transitions of $a$ that are also not in $H$. Finally, deadlocks \textbf{does not display any behavior} -- that is, a $\delta$ process cannot transition to any other states no matter what (though obviously as a constituent part of e.g., a parallel process the other concurrent constituent can still run). \begin{background}[commutativity] \begin{equation*} f(a, b) = f(b, a) \iff f\ \mathrm{commutative} \end{equation*} \end{background} \begin{background}[associativity] \begin{equation*} (a \circ b) \circ c = a \circ (b \circ c) \iff \circ\ \mathrm{associative} \end{equation*} \end{background} \begin{background}[distributivity] \begin{equation*} f(x, a \circ b) = f(x, a) \circ f(x, b) \iff f\ \mathrm{distributes\ over}\ \circ \end{equation*} \end{background} \begin{background}[isomorphism] An isomorphism describes a \textbf{bijective} \textbf{homomorphism}: \begin{itemize} \item { \textbf{Homomorphism} describes a \textbf{structure-preserving} map between two algebraic \textbf{structures} of the same \textbf{type}: \begin{itemize} \item { \textbf{Algebraic structure} describes a set with additional properties -- e.g., an additive group over $\mathbb{N}$, a ring of integers modulo $x$, etc. } \item { Two structures of the same \textbf{type} refers to structures with the same name -- e.g., two groups, two rings, etc. } \item { A \textbf{structure-preserving} map $f$ between two structures intuitively describes a structure such that, for properties $p \in X$, $q \in Y$ between same-type structures $X, Y$, any tuples $X^n \in p$ accepted by $p$ (e.g., $3 + 5 = 8 \implies (3, 5, 8) \in \mathbb{R}.(+)$) satisfies $\mathsf{map}(f, X^n) \in q$. } \end{itemize} } \item { \textbf{Bijection} describes a 1-to-1 correspondence between elements of two sets -- i.e., invertible. } \end{itemize} \end{background} \end{document}