

1 LTS; ACP

LTS and Process Graphs Both specifications and implementations could be represented by *models of concurrency*, for example *labelled transition systems (LTS)* or *process graphs*.

Definition 1.1 (Process Graph) A process graph is a triple (S, I, \rightarrow) such that:

- S a set of states;
- $I \in S$ an initial state;
- \rightarrow a set of triples (s, a, t) each describing a (named) relation $S \rightarrow S$:
 - $s, t \in S$;
 - $a \in \text{Act}$ – a set of actions.

Definition 1.2 (LTS) Same as process graph, except without an initial state. Sometimes used synonymously with process graphs bc. mathematicians are evil.

Alternatively, one may use *process algebraic expressions* to formally represent spec.s and impl.s, for example using *CCS (Calculus of Communicating Systems)*, *CSP (Communicating Sequential Processes)*, and *ACP (Algebra of Communicating Processes)*. Each semantics is of different expressive power.

ACP Define the set of operations:

- ε (successful termination – ACP_ε extension).
- δ (deadlock).
- a (action constant) for each action $a \in \text{Act}$.
Each a describe a **visible action** – $\tau \notin \text{Act}$;
- $P \cdot Q$ (sequential composition between processes P, Q)
- $P + Q$ (summation / choice / alternative composition);
- $P \parallel Q$ (parallel composition).
- $\partial_H(P)$ (restriction / encapsulation).

Given set of (visible) actions H , this removes $\forall a \in H$ in P .

Practically this is often used after defining $\gamma(a, b)$ to enforce sync – via removing non-synced $a.b$ or $b.a$ behaviors;

- $\tau_I(P)$ (abstraction – ACP_τ extension).

Given set of (visible) actions I , this converts $\forall a \in I$ into τ in P .

A τ action is **non-observable** – this will be significant for describing traces & equivalence relations.

- $\gamma : A \times A \rightarrow A$ (partial communication function).

For example, $\gamma(a, b)$ defines new (synchronized) visible action alongside a, b .

We further define the following transition rules (omitting commutative equivalents). First, transition rules for basic process algebra wrt. termination, sequential composition, and choice:

$$\begin{array}{c} \hline \frac{}{a \xrightarrow{a} \varepsilon} \quad \frac{a \xrightarrow{a} \varepsilon}{a + b \xrightarrow{a} \varepsilon} \quad \frac{a \xrightarrow{a} \varepsilon}{a \cdot b \xrightarrow{a} b} \\ \hline \frac{a \xrightarrow{a} a'}{a + b \xrightarrow{a} a'} \quad \frac{a \xrightarrow{a} a'}{a \cdot b \xrightarrow{a} a' \cdot b} \end{array}$$

Then, for parallel processes which may or may not communicate:

$$\begin{array}{c} \frac{a \xrightarrow{a} \varepsilon}{a \parallel b \xrightarrow{a} b} \quad \frac{a \xrightarrow{a} a'}{a \parallel b \xrightarrow{a} a' \parallel b} \\ \hline \frac{a \xrightarrow{a} \varepsilon \quad b \xrightarrow{b} \varepsilon}{a \parallel b \xrightarrow{\gamma(a,b)} \varepsilon} \quad \frac{a \xrightarrow{a} a' \quad b \xrightarrow{b} \varepsilon}{a \parallel b \xrightarrow{\gamma(a,b)} a'} \\ \hline \frac{a \xrightarrow{a} \varepsilon \quad b \xrightarrow{b} b'}{a \parallel b \xrightarrow{\gamma(a,b)} b'} \quad \frac{a \xrightarrow{a} a' \quad b \xrightarrow{b} b'}{a \parallel b \xrightarrow{\gamma(a,b)} a' \parallel b'} \end{array}$$

Furthermore, for encapsulation ∂_H :

$$\frac{a \xrightarrow{x} \varepsilon}{\partial_H(a) \xrightarrow{x} \varepsilon} \quad x \notin H \quad \frac{a \xrightarrow{x} a'}{\partial_H(a) \xrightarrow{x} \partial_H(a')} \quad x \notin H$$

This is to say, $\partial_H(a)$ can execute all transitions of a that are also not in H .

Finally, deadlocks **does not display any behavior** – that is, a δ process cannot transition to any other states no matter what (though obviously as a constituent part of e.g., a parallel process the other concurrent constituent can still run).

Background 1.1 (commutativity)

$$f(a, b) = f(b, a) \iff f \text{ commutative}$$

Background 1.2 (associativity)

$$(a \circ b) \circ c = a \circ (b \circ c) \iff \circ \text{ associative}$$

Background 1.3 (distributivity)

$$f(x, a \circ b) = f(x, a) \circ f(x, b) \iff f \text{ distributes over } \circ$$

Background 1.4 (isomorphism) An isomorphism describes a **bijective homomorphism**:

- **Homomorphism** describes a **structure-preserving** map between two algebraic **structures** of the same **type**:
 - **Algebraic structure** describes a set with additional properties – e.g., an additive group over \mathbb{N} , a ring of integers modulo x , etc.
 - Two structures of the same **type** refers to structures with the same name – e.g., two groups, two rings, etc.
 - A **structure-preserving** map f between two structures intuitively describes a structure such that, for properties $p \in X, q \in Y$ between same-type structures X, Y , any tuples $X^n \in p$ accepted by p (e.g., $3 + 5 = 8 \implies (3, 5, 8) \in \mathbb{R}.(+) \implies \text{map}(f, X^n) \in q$) satisfies $\text{map}(f, X^n) \in q$.
- **Bijection** describes a 1-to-1 correspondence between elements of two sets – i.e., invertible.

2 Semantic Equivalences

Background 2.1 (lattice) A *lattice* describes a real coordinate space \mathbb{R}^n that satisfies:

- Addition / subtraction between two points always produce another point in lattice – i.e., closed under addition / subtraction.
- Lattice points are separated by bounded distances in some range $(0, \max]$.

Define a lattice over which *semantic equivalence relations* for spec. and impl. verification is defined.

Definition 2.1 (discrimination measure) One equivalence relation \equiv is **finer** / **more discriminating** than another \sim if each \equiv -eq. class is a subset of a \sim -eq. class. In other words,

$$\begin{aligned} p \equiv q &\implies p \sim q \\ \iff &\equiv \text{ finer than } \sim \end{aligned}$$