
1 LTS; ACP

LTS and Process Graphs Both specifications and imple-
mentations could be represented by models of concurrency ,
for example labelled transition systems (LTS) or process
graphs.

Definition 1.1 (Process Graph) A process graph is a
triple (S, I,_) such that:

• S a set of states;

• I ∈ S an initial state;

• _ a set of triples (s, a, t) each describing a (named)
relation S → S:

– s, t ∈ S;

– a ∈ Act – a set of actions.

Definition 1.2 (LTS) Same as process graph, except with-
out an initial state. Sometimes used synonymously with pro-
cess graphs bc. mathematicians are evil.

Alternatively, one may use process algebraic expressions to
formally represent spec.s and impl.s, for example using CCS
(Calculus of Communicating Systems), CSP (Communicating
Sequential Processes), and ACP (Algebra of Communicating
Processes). Each semantics is of different expressive power.

ACP Define the set of operations:

• ε (successful termination – ACPε extension).

• δ (deadlock).

• a (action constant) for each action a ∈ Act.

Each a describe a visible action – τ /∈ Act;

• P ·Q (sequential composition between processes P,Q)

• P +Q (summation / choice / alternative composition);

• P ||Q (parallel composition).

• ∂H(P) (restriction / encapsulation).

Given set of (visible) actions H, this removes ∀a ∈ H
in P .

Practically this is often used after defining γ(a, b) to
enforce sync – via removing non-synced a.b or b.a be-
haviors;

• τI(P) (abstraction – ACPτ extension).

Given set of (visible) actions I, this converts ∀a ∈ I into
τ in P .

A τ action is non-observable – this will be significant
for describing traces & equivalence relations.

• γ : A×A → A (partial communication function).

For example, γ(a, b) defines new (synchronized) visible
action alongside a, b.

We further define the following transition rules (omitting
commutative equivalents). First, transition rules for basic
process algebra wrt. termination, sequential composition,
and choice:

a
a−→ ε

a
a−→ ε

a+ b
a−→ ε

a
a−→ ε

a · b a−→ b

a
a−→ a

′

a+ b
a−→ a

′

a
a−→ a

′

a · b a−→ a
′ · b

Then, for parallel processes which may or may not com-
municate:

a
a−→ ε

a||b a−→ b

a
a−→ a

′

a||b a−→ a
′ ||b

a
a−→ ε b

b−→ ε

a||b γ(a,b)−−−−→ ε

a
a−→ a

′
b

b−→ ε

a||b γ(a,b)−−−−→ a
′

a
a−→ ε b

b−→ b
′

a||b γ(a,b)−−−−→ b
′

a
a−→ a

′
b

b−→ b
′

a||b γ(a,b)−−−−→ a
′ ||b′

Furthermore, for encapsulation ∂H :

a
x−→ ε

∂H(a)
x−→ ε

x /∈ H
a

x−→ a
′

∂H(a)
x−→ ∂H(a

′
)
x /∈ H

This is to say, ∂H(a) can execute all transitions of a that are
also not in H.

Finally, deadlocks does not display any behavior –
that is, a δ process cannot transition to any other states no
matter what (though obviously as a constituent part of e.g.,
a parallel process the other concurrent constituent can still
run).

Background 1.1 (commutativity)

f(a, b) = f(b, a) ⇐⇒ f commutative

Background 1.2 (associativity)

(a ◦ b) ◦ c = a ◦ (b ◦ c) ⇐⇒ ◦ associative

Background 1.3 (distributivity)

f(x, a ◦ b) = f(x, a) ◦ f(x, b) ⇐⇒ f distributes over ◦

Background 1.4 (isomorphism) An isomorphism de-
scribes a bijective homomorphism:

• Homomorphism describes a structure-preserving
map between two algebraic structures of the same
type:

– Algebraic structure describes a set with addi-
tional properties – e.g., an additive group over N,
a ring of integers modulo x, etc.

– Two structures of the same type refers to struc-
tures with the same name – e.g., two groups, two
rings, etc.

– A structure-preserving map f between two
structures intuitively describes a structure such
that, for properties p ∈ X, q ∈ Y between same-
type structures X,Y , any tuples Xn ∈ p accepted
by p (e.g., 3 + 5 = 8 =⇒ (3, 5, 8) ∈ R.(+)) satis-
fies map(f,Xn) ∈ q.

• Bijection describes a 1-to-1 correspondence between el-
ements of two sets – i.e., invertible.

1

2 Semantic Equivalences

Background 2.1 (lattice) A lattice describes a real coor-
dinate space Rn that satisfies:

• Addition / subtraction between two points always pro-
duce another point in lattice – i.e., closed under addition
/ subtraction.

• Lattice points are separated by bounded distances in
some range (0,max].

Define a lattice over which semantic equivalence relations
for spec. and impl. verification is defined.

Definition 2.1 (discrimination measure) One equiva-
lence relation ≡ is finer / more discriminating than an-
other ∼ if each ≡-eq. class is a subset of a ∼-eq. class. In
other words,

p ≡ q =⇒ p ∼ q

⇐⇒ ≡ finer than ∼

2

	LTS; ACP
	Semantic Equivalences

