inf-mcs-notes/04-congruence.tex
Zhengyi Chen c5232bc821 ...
2024-04-20 22:38:16 +01:00

162 lines
No EOL
6.4 KiB
TeX

\documentclass[99-notes-packed.tex]{subfiles}
\begin{document}
\paragraph*{Congurence}
If an equivalence relation is a \textit{congurence} for an operator -- i.e., an operator is \textit{compositional} for the equivalence -- then there exists a sort of isomorphism detailed as follows:
\begin{definition}[congurence]
An equivalence $\sim$ is a \textbf{congruence} for a language $\mathcal{L}$ if:
\begin{equation*}
\forall C[\ ] \in \mathcal{L}: P \sim Q \implies C[P] \sim C[Q]
\end{equation*}
where:
\begin{itemize}
\item $C[\ ]$ (context) represents a $\mathcal{L}$-expression with a hole in it, plugged (e.g., with $P$) as $C[P]$.
\end{itemize}
For example, let $P = a.[\ ]$:
\begin{equation*}
\begin{prooftree}
\hypo{P = Q}
\infer1{a.P = a.Q}
\end{prooftree}
\end{equation*}
Equivalently, we can say that $CCP.(.)$ is compositional under equality ($=$).
\end{definition}
\begin{example}[$=_{CT}$ and $\partial_{H}$]
This is a counterexample for showing why $=_{CT}$ is NOT a congurence over ACP. Obviously:
\begin{equation*}
a.b + a.c =_{CT} a.(b + c)
\end{equation*}
However:
\begin{equation*}
\partial_{\{c\}}(a.b + a.c) \neq_{CT} \partial_{\{c\}}(a.(b + c))
\end{equation*}
\end{example}
\begin{definition}[congurence closure]
A \textbf{congurence closure} $\sim^c$ of $\sim$ wrt. language $\mathcal{L}$ is defined by:
\begin{equation*}
P \sim^{c} Q \iff \forall C[\ ] \in \mathcal{L}: C[P] \sim C[Q]
\end{equation*}
\end{definition}
\paragraph*{Equational Axiomisation}
In terms of e.g., real addition we describe the operator as possessing e.g., associativity and commutativity, which in turn allows us to do some transformation during analysis, etc.
Same goes for operators in e.g, CCS:
\begin{center}
\begin{tabular}{cc}
$(P + Q) + R = P + (Q + R)$ & (associativity) \\
$P + Q = Q + P$ & (commutativity) \\
$P + P = P$ & (idempotence) \\
$P + 0 = P$ & ($0$ as neutral element of $+$)
\end{tabular}
\end{center}
\begin{definition}[CCS: expansion theorem]
Suppose:
\begin{center}
\begin{tabular}{cc}
$P \coloneqq \sum_{i \in I} a_i.P_i$ &
$Q \coloneqq \sum_{j \in J} b_i.Q_j$
\end{tabular}
\end{center}
Then,
\begin{align*}
P | Q &= \sum_{i \in I} a_i(P_i | Q) \\
&+ \sum_{i \in I, j \in J} \tau(P_i | Q_j)\ (\mathrm{given\ }a_i = \overline{b_j}) \\
&+ \sum_{j \in J} b_i(P | Q_j)
\end{align*}
Expressions of the form $\sum a.P$ are aka. \textbf{head normal form}.
\end{definition}
\begin{definition}[Recursive Definition Principle]
\begin{equation*}
i \in [1, n]: \langle X_i | E \rangle \in \mathsf{Expr}(X_1 \coloneqq \langle X_1 | E \rangle, \dots, X_n \coloneqq \langle X_n | E \rangle)
\end{equation*}
Basically, some series of expressions for $X_1, \dots, X_n$ exists as solution for $E$.
\end{definition}
\begin{definition}[Recursive Specification Principle]
If there \underline{exists}
\begin{equation*}
i \in [1, n]: y_i \leftarrow \mathsf{Expr}(y_1, \dots, y_n)
\end{equation*}
then:
\begin{equation*}
i \in [1, n]: y_i = \langle X_i | E \rangle
\end{equation*}
In other words, any $y_{1 \dots n}$ that exists is the sole solution for $E$ modulo bisimulation equivalence.
\end{definition}
\paragraph*{Rooted Bisimilarity}
We note that depending on semantics of $\mathcal{L}$, equivalences may (and in fact likely) fail to be a congurence over $\mathcal{L}$. This also is the case for e.g., branching bisimilarity: $\tau.a =_{BB} a$ but $\tau.a + b \ne_{BB} a + b$.
ACP and CCS fixes this by changing the equivalence operator. CSP fixes this by foregoing the $+$ operator.
\begin{definition}[Rooted Branching Bisimilarity]
\begin{align*}
P =_{rBB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{a} Q^{'} \wedge P^{'} =_{BB} Q^{'})\ \wedge \\
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{a} P^{'} \wedge P^{'} =_{BB} Q^{'})
\end{align*}
$=_{rBB}$ is equivalent to branching bisimulation congruence $=_{BB}^c$ over ACP.
\end{definition}
\begin{definition}[Rooted Weak Bisimilarity]
\begin{align*}
P =_{rWB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{\tau \ast a \tau \ast} Q^{'} \wedge P^{'} =_{WB} Q^{'})\ \wedge \\
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{\tau \ast a \tau \ast} P^{'} \wedge P^{'} =_{WB} Q^{'})
\end{align*}
$=_{rWB}$ is equivalent to weak bisimulation congruence $=_{WB}^c$ over CCS.
\end{definition}
\begin{definition}[Eq. axiomisation for rBB, rWB]
$=_{rWB}$ is axiomatised as follows:
\begin{align}
a.\tau.P &= a.P \\
\tau.P &= \tau.P + P \\
a.(\tau.P + Q) &= a.(\tau.P + Q) + a.P
\end{align}
$=_{rBB}$ is axiomatised as follows:
\begin{equation*}
a.(\tau.(P + Q) + Q) = a.(P + Q)
\end{equation*}
\end{definition}
\paragraph*{Strongly/Weakly Guarded Recursions}
Recall that a recursive spec of the form e.g. $X = a.(b + X)$ is guarded -- $X$ exists as a subexpression of $X$ -- and are equivlent modulo strong bisimilarity (viz. RSP).
On the other hand $X = \tau.X$ has solely equivalent solutions modulo $=_{B}$ but not up to e.g. $=_{rBB}$. This breaks the equivalence lattice -- we hence need a stronger concept of \underline{unguardedness} for $=_{B}$.
\begin{definition}[strong unguardedness]
A \textbf{strongly unguarded} recursive specification is one where, for
\begin{equation*}
X = \mathsf{Expr}(X, \dots)
\end{equation*}
the recursive variable $X$ occurs NOT in a subterm of the form:
\begin{equation*}
a \leftarrow A \cup \{\tau\}: a.P^{'}, X \in P^{'}
\end{equation*}
as in, $X$ is not guarded by $\forall a \in A$ nor $\tau$.
It turns out that \textbf{RSP is sound modulo bisimulation for all non-strongly-unguarded recursive specifications}.
\end{definition}
\begin{definition}[weak unguardedness]
Likewise, a \textbf{weakly unguarded} recursive specification is one where recursive variable $X$ is NOT guarded by $\forall a \in A$ only.
Note that strong unguardedness entails weak unguardedness.
\textbf{RSP is sound modulo weak/branching bisimulation for all non-weakly-unguarded recursive specifications}.
\end{definition}
\end{document}