inf-mcs-notes/04-congruence.tex
Zhengyi Chen 86a47662ce ...
2024-04-19 23:25:56 +01:00

116 lines
No EOL
4.3 KiB
TeX

\documentclass[99-notes-packed.tex]{subfiles}
\begin{document}
\paragraph*{Congurence}
If an equivalence relation is a \textit{congurence} for an operator -- i.e., an operator is \textit{compositional} for the equivalence -- then there exists a sort of isomorphism detailed as follows:
\begin{definition}[congurence]
An equivalence $\sim$ is a \textbf{congruence} for a language $\mathcal{L}$ if:
\begin{equation*}
\forall C[\ ] \in \mathcal{L}: P \sim Q \implies C[P] \sim C[Q]
\end{equation*}
where:
\begin{itemize}
\item $C[\ ]$ (context) represents a $\mathcal{L}$-expression with a hole in it, plugged (e.g., with $P$) as $C[P]$.
\end{itemize}
For example, let $P = a.[\ ]$:
\begin{equation*}
\begin{prooftree}
\hypo{P = Q}
\infer1{a.P = a.Q}
\end{prooftree}
\end{equation*}
Equivalently, we can say that $CCP.(.)$ is compositional under equality ($=$).
\end{definition}
\begin{example}[$=_{CT}$ and $\partial_{H}$]
This is a counterexample for showing why $=_{CT}$ is NOT a congurence over ACP. Obviously:
\begin{equation*}
a.b + a.c =_{CT} a.(b + c)
\end{equation*}
However:
\begin{equation*}
\partial_{\{c\}}(a.b + a.c) \neq_{CT} \partial_{\{c\}}(a.(b + c))
\end{equation*}
\end{example}
\begin{definition}[congurence closure]
A \textbf{congurence closure} $\sim^c$ of $\sim$ wrt. language $\mathcal{L}$ is defined by:
\begin{equation*}
P \sim^{c} Q \iff \forall C[\ ] \in \mathcal{L}: C[P] \sim C[Q]
\end{equation*}
\end{definition}
\paragraph*{Equational Axiomisation}
In terms of e.g., real addition we describe the operator as possessing e.g., associativity and commutativity, which in turn allows us to do some transformation during analysis, etc.
Same goes for operators in e.g, CCS:
\begin{center}
\begin{tabular}{cc}
$(P + Q) + R = P + (Q + R)$ & (associativity) \\
$P + Q = Q + P$ & (commutativity) \\
$P + P = P$ & (idempotence) \\
$P + 0 = P$ & ($0$ as neutral element of $+$)
\end{tabular}
\end{center}
\begin{definition}[CCS: expansion theorem]
Suppose:
\begin{align*}
P \coloneqq& \sum_{i \in I} a_i.P_i \\
Q \coloneqq& \sum_{j \in J} b_i.Q_j
\end{align*}
Then,
\begin{align*}
P | Q &= \sum_{i \in I} a_i(P_i | Q) \\
&+ \sum_{i \in I, j \in J} \tau(P_i | Q_j)\ (\mathrm{given\ }a_i = \overline{b_j}) \\
&+ \sum_{j \in J} b_i(P | Q_j)
\end{align*}
Expressions of the form $\sum a.P$ are aka. \textbf{head normal form}.
\end{definition}
\begin{definition}[Recursive Definition Principle]
\begin{equation*}
i \in [1, n]: \langle X_i | E \rangle \in \mathsf{Expr}(X_1 \coloneqq \langle X_1 | E \rangle, \dots, X_n \coloneqq \langle X_n | E \rangle)
\end{equation*}
Basically, some series of expressions for $X_1, \dots, X_n$ exists as solution for $E$.
\end{definition}
\begin{definition}[Recursive Specification Principle]
If there \underline{exists}
\begin{equation*}
i \in [1, n]: y_i \leftarrow \mathsf{Expr}(y_1, \dots, y_n)
\end{equation*}
then:
\begin{equation*}
i \in [1, n]: y_i = \langle X_i | E \rangle
\end{equation*}
In other words, any $y_{1 \dots n}$ that exists is the sole solution for $E$ modulo bisimulation equivalence.
\end{definition}
\paragraph*{Rooted Bisimilarity}
We note that depending on semantics of $\mathcal{L}$, equivalences may (and in fact likely) fail to be a congurence over $\mathcal{L}$. This also is the case for e.g., branching bisimilarity: $\tau.a =_{BB} a$ but $\tau.a + b \ne_{BB} a + b$.
ACP and CCS fixes this by changing the equivalence operator.
\begin{definition}[Rooted Branching Bisimilarity]
\begin{align*}
P =_{rBB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{a} Q^{'} \wedge P^{'} =_{BB} Q^{'})\ \wedge \\
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{a} P^{'} \wedge P^{'} =_{BB} Q^{'})
\end{align*}
\end{definition}
\begin{definition}[Rooted Weak Bisimilarity]
\begin{align*}
P =_{rWB} Q \iff &(P \xrightarrow{a} P^{'} \implies Q \xrightarrow{a} Q^{'} \wedge P^{'} =_{WB} Q^{'})\ \wedge \\
&(Q \xrightarrow{a} Q^{'} \implies P \xrightarrow{a} P^{'} \wedge P^{'} =_{WB} Q^{'})
\end{align*}
\end{definition}
\end{document}