lemme cook alright?

This commit is contained in:
Zhengyi Chen 2024-02-25 21:03:32 +00:00
parent b6d2460060
commit 62df7464e4
9 changed files with 504 additions and 3 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
baseline-experiments/
synchronous/

86
arguments.py Normal file
View file

@ -0,0 +1,86 @@
import argparse
from typing import List
parser = argparse.ArgumentParser(
description = "Reverse-perspective + (TransCrowd | CSRNet)"
)
# Reproducibility configuration ==============================================
parser.add_argument(
"--seed", type=int, default=None, help="RNG seed"
)
# Data configuration =========================================================
parser.add_argument(
"--train_dataset", type=str, default="ShanghaiA", help="Training dataset"
)
parser.add_argument(
"--test_dataset", type=str, default="ShanghaiA", help="Evaluation dataset"
)
parser.add_argument(
"--print_freq", type=int, default=1,
help="Print evaluation data per <print-freq> training epochs"
)
parser.add_argument(
"--start_epoch", type=int, default=0, help="Epoch to start training from"
)
parser.add_argument(
"--save_path", type=str, default="./save/default/",
help="Directory to save checkpoints in"
)
# Model configuration ========================================================
parser.add_argument(
"--load_revnet_from", type=str, default=None,
help="Pre-trained reverse perspective model path"
)
parser.add_argument(
"--load_csrnet_from", type=str, default=None,
help="Pre-trained CSRNet model path"
)
parser.add_argument(
"--load_transcrowd_from", type=str, default=None,
help="Pre-trained TransCrowd model path"
)
# Optimizer configuration ====================================================
parser.add_argument(
"--weight_decay", type=float, default=5e-4, help="Weight decay"
)
parser.add_argument(
"--momentum", type=float, default=0.95, help="Momentum"
)
parser.add_argument(
"--best_pred", type=float, default=1e5,
help="Best prediction (MAE/MSE etc.)"
)
# Performance configuration ==================================================
parser.add_argument(
"--batch_size", type=int, default=8, help="Number of images per batch"
)
parser.add_argument(
"--epochs", type=int, default=250, help="Number of epochs to train"
)
parser.add_argument(
"--gpus", type=List[int], default=[0],
help="GPU IDs to be made available for training runtime"
)
# Runtime configuration ======================================================
parser.add_argument(
"--use_ddp", type=bool, default=False,
help="Use DistributedDataParallel training"
)
parser.add_argument(
"--ddp_world_size", type=int, default=1,
help="DDP: Number of processes in Pytorch process group"
)
# nni configuration ==========================================================
parser.add_argument(
"--lr", type=float, default=1e-5, help="Learning rate"
)
args = parser.parse_args()
ret_args = parser.parse_args()

0
eval-transcrowd.py Normal file
View file

59
model/csrnet.py Normal file
View file

@ -0,0 +1,59 @@
# Stolen from https://github.com/leeyeehoo/CSRNet-pytorch.git
import torch.nn as nn
import torch
from torchvision import models
from utils import save_net,load_net
class CSRNet(nn.Module):
def __init__(self, load_weights=False):
super(CSRNet, self).__init__()
# Ref. 2018 paper
self.seen = 0
self.frontend_feat = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512]
self.backend_feat = [512, 512, 512, 256, 128, 64] # 4-parallel, 1, 2, 2-then-4, 4 dilation rates
self.frontend = make_layers(self.frontend_feat)
self.backend = make_layers(self.backend_feat,in_channels = 512,dilation = True)
self.output_layer = nn.Conv2d(64, 1, kernel_size=1)
if not load_weights:
mod = models.vgg16(pretrained = True)
self._initialize_weights()
for i in range(len(self.frontend.state_dict().items())):
self.frontend.state_dict().items()[i][1].data[:] = mod.state_dict().items()[i][1].data[:]
def forward(self,x):
x = self.frontend(x)
x = self.backend(x)
x = self.output_layer(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, in_channels = 3, batch_norm=False, dilation=False):
if dilation:
d_rate = 2
else:
d_rate = 1
layers = []
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=d_rate, dilation=d_rate)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)

View file

@ -90,7 +90,7 @@ class PerspectiveEstimator(nn.Module):
stride=conv_stride, stride=conv_stride,
dilation=conv_dilation, dilation=conv_dilation,
), # (N, 1, H, W) ), # (N, 1, H, W)
'revpers_avg_pooling0': nn.AdaptiveAvgPool2d( 'revpers_avg_pool0': nn.AdaptiveAvgPool2d(
output_size=(pool_capacity, 1) output_size=(pool_capacity, 1)
), # (N, 1, K, 1) ), # (N, 1, K, 1)
# [?] Do we need to explicitly translate to (N, K) here? # [?] Do we need to explicitly translate to (N, K) here?
@ -108,7 +108,7 @@ class PerspectiveEstimator(nn.Module):
out = layer.forward(out) out = layer.forward(out)
# Normalize in (0, 1] # Normalize in (0, 1]
F.relu_(out) # in-place F.relu(out, inplace=True)
out = torch.exp(-out) + self.epsilon out = torch.exp(-out) + self.epsilon
return out return out
@ -116,4 +116,47 @@ class PerspectiveEstimator(nn.Module):
# def unsupervised_loss(predictions, targets): # def unsupervised_loss(predictions, targets):
# [TODO] We need a modified loss -- one that takes advantage of attention instead # [TODO] We need a modified loss -- one that takes advantage of attention instead
# of feature map. I feel like they should work likewise but who knows # of feature map. I feel like they should work likewise but who knows
# [XXX] no forget it, we are pre-training rev-perspective as told by the 2020 paper
# i.e., via using CSRNet.
# Not sure which part is the feature map derived. Maybe after the front-end?
# In any case we can always just use the CSR output (inferred density map) as feature map --
# through which we compute, for each image:
# criterion = Variance([output.sum(axis=W) * effective_pixel_per_row])
# In other cases we sum over channels i.e., each feature map i.e., over each filter output
# Not sure what channel means in this case...
def warped_output_loss(csrnet_pred):
N, H, W = csrnet_pred.shape()
def transform_coordinates(
img: torch.Tensor, # (C, W, H)
factor: float,
in_place: bool = True
):
dev_of_img = img.device
# Normalize X coords to [0, pi]
min_x = torch.Tensor([0., 0., 0.]).to(dev_of_img)
max_x = torch.Tensor([0., np.pi, 0.]).to(dev_of_img)
min_xdim = torch.min(img, dim=1, keepdim=True)[0]
max_xdim = torch.max(img, dim=1, keepdim=True)[0]
(img.sub_(min_xdim)
.div_(max_xdim - min_xdim)
.mul_(max_x - min_x)
.add_(min_x))
# Normalize Y coords to [0, 1]
min_y = torch.Tensor([0., 0., 0.]).to(dev_of_img)
max_y = torch.Tensor([0., 1., 0.]).to(dev_of_img)
min_ydim = torch.min(img, dim=2, keepdim=True)[0]
max_ydim = torch.max(img, dim=2, keepdim=True)[0]
(img.sub_(min_ydim)
.div_(max_ydim - min_ydim)
.mul_(max_y - min_y)
.add_(min_y))
# Do elliptical transformation
tmp = img.clone().detach()
pass

0
model/revpers_csrnet.py Normal file
View file

204
model/stn.py Normal file
View file

@ -0,0 +1,204 @@
# stole from pytorch tutorial
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
class StnNet(nn.Module):
def __init__(self, input_size: torch.Size):
super(StnNet, self).__init__()
# Sanity check
assert 5 > len(input_size) > 2 # single or batch ([N, ]C, H, W)
if len(input_size) == 3:
channels, height, width = input_size
else:
channels, height, width = input_size[1:]
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
# Spatial transformer localization-network
self.localization_net = nn.Sequential( # (N, C, H, W)
nn.Conv2d(channels, 8, kernel_size=7), # (N, 8, H-6, W-6)
nn.MaxPool2d(2, stride=2), # (N, 8, (H-6)/2, (W-6)/2)
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5), # (N, 10, ((H-6)/2)-4, ((W-6)/2)-4)
nn.MaxPool2d(2, stride=2), # (N, 10, (((H-6)/2)-4)/2, (((H-6)/2)-4)/2)
nn.ReLU(True)
) # -> (N, 10, (((H-6)/2)-4)/2, (((H-6)/2)-4)/2)
self._loc_net_out_shape = (
10,
(((height - 6) // 2) - 4) // 2,
(((width - 6) // 2) - 4) // 2
) # TODO: PLEASE let me know if there are better ways of doing this...
# Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
nn.Linear(np.prod(self._loc_net_out_shape), 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
) # -> (6,)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(
torch.tensor(
[1, 0, 0,
0, 1, 0],
dtype=torch.float
)
)
# Spatial transformer network forward function
def stn(self, x):
xs = self.localization_net(x)
xs = xs.view(-1, np.prod(self._loc_net_out_shape)) # -> (N, whatever)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3) # -> (2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# Perform the usual forward pass
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_loader = torch.utils.data.DataLoader(
dataset=datasets.MNIST(
root="./synchronous/",
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.1307, ), (.3081, ))
]),
),
batch_size=64,
shuffle=True,
num_workers=4,
)
valid_loader = torch.utils.data.DataLoader(
dataset=datasets.MNIST(
root = "./synchronous/",
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.1307, ), (.3081, ))
]),
),
batch_size=64,
shuffle=True,
num_workers=4,
)
shape_of_input = next(iter(train_loader))[0].shape
model = StnNet(shape_of_input).to(device)
optimizer = optim.SGD(model.parameters(), lr=.01)
def train(epoch):
model.train()
for i, (x_, t_) in enumerate(train_loader):
# XXX: x_.shape == (N, C, H, W)
# Inference
x_, t_ = x_.to(device), t_.to(device)
optimizer.zero_grad()
y_ = model(x_)
# Backprop
l_ = F.nll_loss(y_, t_)
l_.backward()
optimizer.step()
if i % 500 == 0:
print("Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
i * len(x_),
len(train_loader.dataset),
100. * i / len(train_loader),
l_.item()
))
def valid():
with torch.no_grad():
model.eval()
valid_loss = 0
correct = 0
for x_, t_ in valid_loader:
x_, t_ = x_.to(device), t_.to(device)
y_ = model(x_)
# Sum batch loss
valid_loss += F.nll_loss(y_, t_, size_average=False).item()
pred = y_.max(1, keepdim=True)[1]
correct += pred.eq(t_.view_as(pred)).sum().item()
valid_loss /= len(valid_loader.dataset)
print("\nValid set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n"
.format(
valid_loss, correct, len(valid_loader.dataset),
100. * correct / len(valid_loader.dataset)
)
)
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(1, 20 + 1):
train(epoch)
valid()
# Visualize the STN transformation on some input batch
visualize_stn()
plt.ioff()
plt.show()

101
train-revpers.py Normal file
View file

@ -0,0 +1,101 @@
from argparse import Namespace
import timm
import torch
import torch.multiprocessing as torch_mp
from torch.utils.data import DataLoader
import nni
import logging
from model.csrnet import CSRNet
from model.reverse_perspective import PerspectiveEstimator
from arguments import args, ret_args
logger = logging.getLogger("train-revpers")
# We use 2 separate networks as opposed to 1 whole network --
# this is more flexible, as we only train one of them...
def gen_csrnet(pth_tar: str = None) -> CSRNet:
if pth_tar is not None:
model = CSRNet(load_weights=True)
checkpoint = torch.load(pth_tar)
model.load_state_dict(checkpoint["state_dict"], strict=False)
else:
model = CSRNet(load_weights=False)
return model
def gen_revpers(pth_tar: str = None, **kwargs) -> PerspectiveEstimator:
model = PerspectiveEstimator(**kwargs)
if pth_tar is not None:
checkpoint = torch.load(pth_tar)
model.load_state_dict(checkpoint["state_dict"], strict=False)
return model
def build_train_loader():
pass
def build_valid_loader():
pass
def train_one_epoch(
train_loader: DataLoader,
revpers_net: PerspectiveEstimator,
csr_net: CSRNet,
criterion,
optimizer,
scheduler,
epoch: int,
args: Namespace
):
# Get learning rate
curr_lr = optimizer.param_groups[0]["lr"]
print("Epoch %d, processed %d samples, lr %.10f" %
(epoch, epoch * len(train_loader.dataset), curr_lr)
)
# Set to train mode (perspective estimator only)
revpers_net.train()
end = time.time()
# In one epoch, for each training sample
for i, (fname, img, gt_count) in enumerate(train_loader):
# fpass (revpers)
img = img.cuda()
out_revpers = revpers_net(img)
# We need to perform image transformation here...
img = img.cpu()
# fpass (csrnet -- do not train)
img = img.cuda()
out_csrnet = csr_net(img)
# loss wrt revpers
loss = criterion()
pass
def valid_one_epoch():
pass
def main(rank: int, args: Namespace):
pass
if __name__ == "__main__":
tuner_params = nni.get_next_parameter()
logger.debug("Generated hyperparameters: {}", tuner_params)
combined_params = Namespace(
nni.utils.merge_parameter(ret_args, tuner_params)
) # Namespaces have better ergonomics, notably a struct-like access syntax.
logger.debug("Parameters: {}", combined_params)
if combined_params.use_ddp:
# Use DDP, spawn threads
torch_mp.spawn(
main,
args=(combined_params, ), # rank supplied automatically as 1st param
nprocs=combined_params.world_size,
)
else:
# No DDP, run in current thread
main(None, combined_params)

6
transform_img.py Normal file
View file

@ -0,0 +1,6 @@
# If we cannot get revpersnet running,
# we still ought to do some sort of information-preserving perspective transformation
# e.g., randomized transformation
# and let transcrowd to crunch through these transformed image instead.
# After training, we obtain the attention map and put it in our paper.
# I just want to get things done...