TEST: train on gt_count instead of kpoint
This commit is contained in:
parent
ee50e84946
commit
83fcc43f0b
3 changed files with 26 additions and 39 deletions
|
|
@ -96,6 +96,9 @@ def pre_dataset_sh():
|
|||
) # To same shape as image, so i, j flipped wrt. coordinates
|
||||
kpoint = sparse_mat.toarray()
|
||||
|
||||
# Sum count as ground truth (we need to train STN, remember?)
|
||||
gt_count = sparse_mat.nnz
|
||||
|
||||
fname = img_path.split("/")[-1]
|
||||
root_path = img_path.split("IMG_")[0].replace("images", "images_crop")
|
||||
|
||||
|
|
@ -108,6 +111,7 @@ def pre_dataset_sh():
|
|||
mode='w'
|
||||
) as hf:
|
||||
hf["kpoint"] = kpoint
|
||||
hf["gt_count"] = gt_count
|
||||
|
||||
|
||||
def make_npydata():
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue