Added sth more
This commit is contained in:
parent
49a913a328
commit
99266d9c92
2 changed files with 77 additions and 30 deletions
|
|
@ -7,6 +7,7 @@ subproblem of actually counting the heads in each *transformed* raw image.
|
|||
Transcrowd: weakly-supervised crowd counting with transformers.
|
||||
Science China Information Sciences, 65(6), 160104.
|
||||
"""
|
||||
from typing import Optional
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
|
|
@ -69,7 +70,7 @@ class VisionTransformerGAP(VisionTransformer):
|
|||
# the sole input which the transformer would need to learn to encode
|
||||
# whatever it learnt from input into that token.
|
||||
# Source: https://datascience.stackexchange.com/a/110637
|
||||
# That said, I don't think this is useful in this case...
|
||||
# That said, I don't think this is useful for GAP...
|
||||
cls_tokens = self.cls_token.expand(B, -1, -1)
|
||||
x = torch.cat((cls_tokens, x), dim=1) # [[cls_token, x_i, ...]...]
|
||||
|
||||
|
|
@ -104,4 +105,39 @@ class STNet_VisionTransformerGAP(VisionTransformerGAP):
|
|||
|
||||
def forward(self, x):
|
||||
x = self.stnet(x)
|
||||
return super(STNet_VisionTransformerGAP, self).forward(x)
|
||||
return super(STNet_VisionTransformerGAP, self).forward(x)
|
||||
|
||||
|
||||
@register_model
|
||||
def base_patch16_384_gap(pth_tar: Optional[str] = None, **kwargs):
|
||||
model = VisionTransformerGAP(
|
||||
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12,
|
||||
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
**kwargs
|
||||
)
|
||||
model.default_cfg = _cfg()
|
||||
|
||||
if pth_tar is not None:
|
||||
checkpoint = torch.load(pth_tar)
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
print("Loaded pre-trained pth.tar from \'{}\'".format(pth_tar))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def stn_patch16_384_gap(pth_tar: Optional[str] = None, **kwargs):
|
||||
model = STNet_VisionTransformerGAP(
|
||||
img_shape=torch.Size((3, 384, 384)),
|
||||
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12,
|
||||
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
**kwargs
|
||||
)
|
||||
model.default_cfg = _cfg()
|
||||
|
||||
if pth_tar is not None:
|
||||
checkpoint = torch.load(pth_tar)
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
print("Loaded pre-trained pth.tar from \'{}\'".format(pth_tar))
|
||||
|
||||
return model
|
||||
Loading…
Add table
Add a link
Reference in a new issue