Added sth more

This commit is contained in:
Zhengyi Chen 2024-02-27 21:27:02 +00:00
parent 49a913a328
commit 99266d9c92
2 changed files with 77 additions and 30 deletions

View file

@ -1,101 +0,0 @@
from argparse import Namespace
import timm
import torch
import torch.multiprocessing as torch_mp
from torch.utils.data import DataLoader
import nni
import logging
from model.csrnet import CSRNet
from model.reverse_perspective import PerspectiveEstimator
from arguments import args, ret_args
logger = logging.getLogger("train-revpers")
# We use 2 separate networks as opposed to 1 whole network --
# this is more flexible, as we only train one of them...
def gen_csrnet(pth_tar: str = None) -> CSRNet:
if pth_tar is not None:
model = CSRNet(load_weights=True)
checkpoint = torch.load(pth_tar)
model.load_state_dict(checkpoint["state_dict"], strict=False)
else:
model = CSRNet(load_weights=False)
return model
def gen_revpers(pth_tar: str = None, **kwargs) -> PerspectiveEstimator:
model = PerspectiveEstimator(**kwargs)
if pth_tar is not None:
checkpoint = torch.load(pth_tar)
model.load_state_dict(checkpoint["state_dict"], strict=False)
return model
def build_train_loader():
pass
def build_valid_loader():
pass
def train_one_epoch(
train_loader: DataLoader,
revpers_net: PerspectiveEstimator,
csr_net: CSRNet,
criterion,
optimizer,
scheduler,
epoch: int,
args: Namespace
):
# Get learning rate
curr_lr = optimizer.param_groups[0]["lr"]
print("Epoch %d, processed %d samples, lr %.10f" %
(epoch, epoch * len(train_loader.dataset), curr_lr)
)
# Set to train mode (perspective estimator only)
revpers_net.train()
end = time.time()
# In one epoch, for each training sample
for i, (fname, img, gt_count) in enumerate(train_loader):
# fpass (revpers)
img = img.cuda()
out_revpers = revpers_net(img)
# We need to perform image transformation here...
img = img.cpu()
# fpass (csrnet -- do not train)
img = img.cuda()
out_csrnet = csr_net(img)
# loss wrt revpers
loss = criterion()
pass
def valid_one_epoch():
pass
def main(rank: int, args: Namespace):
pass
if __name__ == "__main__":
tuner_params = nni.get_next_parameter()
logger.debug("Generated hyperparameters: {}", tuner_params)
combined_params = Namespace(
nni.utils.merge_parameter(ret_args, tuner_params)
) # Namespaces have better ergonomics, notably a struct-like access syntax.
logger.debug("Parameters: {}", combined_params)
if combined_params.use_ddp:
# Use DDP, spawn threads
torch_mp.spawn(
main,
args=(combined_params, ), # rank supplied automatically as 1st param
nprocs=combined_params.world_size,
)
else:
# No DDP, run in current thread
main(None, combined_params)