Added sth more

This commit is contained in:
Zhengyi Chen 2024-02-27 21:27:02 +00:00
parent 49a913a328
commit 99266d9c92
2 changed files with 77 additions and 30 deletions

View file

@ -7,6 +7,7 @@ subproblem of actually counting the heads in each *transformed* raw image.
Transcrowd: weakly-supervised crowd counting with transformers.
Science China Information Sciences, 65(6), 160104.
"""
from typing import Optional
from functools import partial
import numpy as np
@ -69,7 +70,7 @@ class VisionTransformerGAP(VisionTransformer):
# the sole input which the transformer would need to learn to encode
# whatever it learnt from input into that token.
# Source: https://datascience.stackexchange.com/a/110637
# That said, I don't think this is useful in this case...
# That said, I don't think this is useful for GAP...
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1) # [[cls_token, x_i, ...]...]
@ -105,3 +106,38 @@ class STNet_VisionTransformerGAP(VisionTransformerGAP):
def forward(self, x):
x = self.stnet(x)
return super(STNet_VisionTransformerGAP, self).forward(x)
@register_model
def base_patch16_384_gap(pth_tar: Optional[str] = None, **kwargs):
model = VisionTransformerGAP(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
model.default_cfg = _cfg()
if pth_tar is not None:
checkpoint = torch.load(pth_tar)
model.load_state_dict(checkpoint["model"], strict=False)
print("Loaded pre-trained pth.tar from \'{}\'".format(pth_tar))
return model
@register_model
def stn_patch16_384_gap(pth_tar: Optional[str] = None, **kwargs):
model = STNet_VisionTransformerGAP(
img_shape=torch.Size((3, 384, 384)),
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
model.default_cfg = _cfg()
if pth_tar is not None:
checkpoint = torch.load(pth_tar)
model.load_state_dict(checkpoint["model"], strict=False)
print("Loaded pre-trained pth.tar from \'{}\'".format(pth_tar))
return model

View file

@ -1,46 +1,63 @@
import os
import random
from typing import Optional
from argparse import Namespace
import timm
import torch
import torch.nn as nn
import torch.multiprocessing as torch_mp
from torch.utils.data import DataLoader
import nni
import logging
import numpy as np
from model.csrnet import CSRNet
from model.reverse_perspective import PerspectiveEstimator
from model.transcrowd_gap import VisionTransformerGAP
from arguments import args, ret_args
logger = logging.getLogger("train-revpers")
logger = logging.getLogger("train")
def setup_process_group(
rank: int,
world_size: int,
master_addr: str = "localhost",
master_port: Optional[np.ushort] = None
):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = (
str(random.randint(40000, 65545))
if master_port is None
else str(master_port)
)
# join point!
torch.distributed.init_process_group(
backend="nccl", rank=rank, world_size=world_size
)
# TODO:
# The shape for each batch in transcrowd is [3, 384, 384],
# this is due to images being cropped before training.
# To preserve image semantics wrt the entire layout, we want to apply cropping
# i.e., as encoder input during the inference/training pipeline.
# This should be okay since our transformations are all deterministic?
# not sure...
# We use 2 separate networks as opposed to 1 whole network --
# this is more flexible, as we only train one of them...
def gen_csrnet(pth_tar: str = None) -> CSRNet:
if pth_tar is not None:
model = CSRNet(load_weights=True)
checkpoint = torch.load(pth_tar)
model.load_state_dict(checkpoint["state_dict"], strict=False)
else:
model = CSRNet(load_weights=False)
return model
def gen_revpers(pth_tar: str = None, **kwargs) -> PerspectiveEstimator:
model = PerspectiveEstimator(**kwargs)
if pth_tar is not None:
checkpoint = torch.load(pth_tar)
model.load_state_dict(checkpoint["state_dict"], strict=False)
return model
def build_train_loader():
pass
def build_valid_loader():
pass
def train_one_epoch(
train_loader: DataLoader,
revpers_net: PerspectiveEstimator,
csr_net: CSRNet,
model: VisionTransformerGAP,
criterion,
optimizer,
scheduler,
@ -59,16 +76,10 @@ def train_one_epoch(
# In one epoch, for each training sample
for i, (fname, img, gt_count) in enumerate(train_loader):
# move stuff to device
# fpass (revpers)
img = img.cuda()
out_revpers = revpers_net(img)
# We need to perform image transformation here...
img = img.cpu()
# fpass (csrnet -- do not train)
img = img.cuda()
out_csrnet = csr_net(img)
# loss wrt revpers
loss = criterion()