Loss revamp & Renamed model to network
This commit is contained in:
parent
0d35d607fe
commit
9d2a30a226
7 changed files with 44 additions and 32 deletions
55
network/glue.py
Normal file
55
network/glue.py
Normal file
|
|
@ -0,0 +1,55 @@
|
|||
# Glue layer for transforming whole pictures into 384x384 sequence for encoder input
|
||||
from dataclasses import dataclass
|
||||
from itertools import product
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
from torchvision import transforms
|
||||
|
||||
import numpy as np
|
||||
from torchvision.transforms import v2
|
||||
|
||||
# The v2 way, apparantly. [1]
|
||||
class SquareCropTransformLayer(nn.Module):
|
||||
def __init__(self, crop_size: int):
|
||||
super(SquareCropTransformLayer, self).__init__()
|
||||
self.crop_size = crop_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x_: torch.Tensor,
|
||||
kpoints_: torch.Tensor
|
||||
) -> (torch.Tensor, torch.Tensor):
|
||||
# Here, x_ & kpoints_ already applied affine transform.
|
||||
assert len(x_.shape) == 4
|
||||
batch_size, channels, height, width = x_.shape
|
||||
h_split_count = height // self.crop_size
|
||||
w_split_count = width // self.crop_size
|
||||
|
||||
# Perform identical splits -- note kpoints_ does not have C dimension!
|
||||
ret_x = x_.view(
|
||||
batch_size * h_split_count * w_split_count,
|
||||
channels,
|
||||
self.crop_size,
|
||||
self.crop_size,
|
||||
)
|
||||
split_t = kpoints_.view(
|
||||
batch_size * h_split_count * w_split_count,
|
||||
self.crop_size,
|
||||
self.crop_size,
|
||||
)
|
||||
|
||||
# Sum into gt_count
|
||||
ret_gt_count = (torch
|
||||
.sum(split_t.view(split_t.size(0), -1), dim=1)
|
||||
.unsqueeze(1)
|
||||
)
|
||||
|
||||
return ret_x, ret_gt_count
|
||||
|
||||
"""
|
||||
References:
|
||||
[1] https://pytorch.org/vision/stable/auto_examples/transforms/plot_custom_transforms.html
|
||||
"""
|
||||
Loading…
Add table
Add a link
Reference in a new issue