Loss revamp & Renamed model to network
This commit is contained in:
parent
0d35d607fe
commit
9d2a30a226
7 changed files with 44 additions and 32 deletions
68
train.py
68
train.py
|
|
@ -16,11 +16,16 @@ import logging
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from model.transcrowd_gap import VisionTransformerGAP
|
||||
from network.transcrowd_gap import (
|
||||
VisionTransformerGAP,
|
||||
STNet_VisionTransformerGAP,
|
||||
base_patch16_384_gap,
|
||||
stn_patch16_384_gap
|
||||
)
|
||||
from arguments import args, ret_args
|
||||
import dataset
|
||||
from dataset import *
|
||||
from model.transcrowd_gap import *
|
||||
# from model.transcrowd_gap import *
|
||||
from checkpoint import save_checkpoint
|
||||
|
||||
logger = logging.getLogger("train")
|
||||
|
|
@ -171,7 +176,7 @@ def worker(rank: int, args: Namespace):
|
|||
weight_decay=args.weight_decay
|
||||
)
|
||||
scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer, milestones=[300], gamma=.1, last_epoch=-1
|
||||
optimizer, milestones=[50], gamma=.1, last_epoch=-1
|
||||
)
|
||||
|
||||
# Checkpointing
|
||||
|
|
@ -267,33 +272,43 @@ def train_one_epoch(
|
|||
gt_count_whole = gt_count_whole.cuda()
|
||||
device_type = "cuda"
|
||||
|
||||
# Desperate measure to reduce mem footprint...
|
||||
# with torch.autocast(device_type):
|
||||
# fpass
|
||||
out, gt_count = model(img, kpoint)
|
||||
# loss
|
||||
loss = criterion(out, gt_count) # wrt. transformer
|
||||
|
||||
# loss & bpass & etc.
|
||||
if isinstance(model.module, STNet_VisionTransformerGAP):
|
||||
loss_xformer = criterion(out, gt_count)
|
||||
loss_stn = (
|
||||
F.mse_loss(
|
||||
gt_count.view(batch_size, -1).sum(axis=1, keepdim=True),
|
||||
gt_count_whole)
|
||||
+ F.sigmoid(
|
||||
gt_count.view(batch_size, -1).var(dim=1).mean())
|
||||
)
|
||||
loss_stn.requires_grad = True
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
# Accum first for STN
|
||||
loss_stn.backward(
|
||||
inputs=list(model.module.stnet.parameters()), retain_graph=True
|
||||
)
|
||||
# Avoid double accum
|
||||
for param in model.module.stnet.parameters():
|
||||
param.grad = None
|
||||
# Then, backward for entire net
|
||||
loss_xformer.backward()
|
||||
|
||||
if args.export_to_h5:
|
||||
train_df.loc[epoch * i, "l1loss"] = float(loss_xformer.item())
|
||||
train_df.loc[epoch * i, "composite-loss"] = float(loss_stn.item())
|
||||
else:
|
||||
writer.add_scalar("l1loss", loss_xformer, epoch * i)
|
||||
writer.add_scalar("composite-loss", loss_stn, epoch * i)
|
||||
else:
|
||||
loss = criterion(out, gt_count)
|
||||
if args.export_to_h5:
|
||||
train_df.loc[epoch * i, "l1loss"] = float(loss.item())
|
||||
else:
|
||||
writer.add_scalar(
|
||||
"L1-loss wrt. xformer (train)", loss, epoch * i
|
||||
)
|
||||
|
||||
loss += (
|
||||
F.mse_loss( # stn: info retainment
|
||||
gt_count.view(batch_size, -1).sum(axis=1, keepdim=True),
|
||||
gt_count_whole)
|
||||
+ F.threshold( # stn: perspective correction
|
||||
gt_count.view(batch_size, -1).var(dim=1).mean(),
|
||||
threshold=loss.item(),
|
||||
value=loss.item()
|
||||
)
|
||||
)
|
||||
if args.export_to_h5:
|
||||
train_df.loc[epoch * i, "composite-loss"] = float(loss.item())
|
||||
else:
|
||||
writer.add_scalar("Composite loss (train)", loss, epoch * i)
|
||||
writer.add_scalar("l1loss", loss, epoch * i)
|
||||
|
||||
# free grad from mem
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
|
@ -355,9 +370,6 @@ def valid_one_epoch(test_loader, model, device, epoch, args):
|
|||
mse += diff ** 2
|
||||
|
||||
if i % 5 == 0:
|
||||
# with torch.no_grad():
|
||||
# img_xformed = model.stnet(img).to("cpu")
|
||||
# xformed.append(img_xformed)
|
||||
print("[valid_one_epoch] {} | Gt {:.2f} Pred {:.4f} |".format(
|
||||
fname[0],
|
||||
torch.sum(gt_count_whole).item(),
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue