# Stolen from https://github.com/leeyeehoo/CSRNet-pytorch.git import torch.nn as nn import torch from torchvision import models from utils import save_net,load_net class CSRNet(nn.Module): def __init__(self, load_weights=False): super(CSRNet, self).__init__() # Ref. 2018 paper self.seen = 0 self.frontend_feat = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512] self.backend_feat = [512, 512, 512, 256, 128, 64] # 4-parallel, 1, 2, 2-then-4, 4 dilation rates self.frontend = make_layers(self.frontend_feat) self.backend = make_layers(self.backend_feat,in_channels = 512,dilation = True) self.output_layer = nn.Conv2d(64, 1, kernel_size=1) if not load_weights: mod = models.vgg16(pretrained = True) self._initialize_weights() for i in range(len(self.frontend.state_dict().items())): self.frontend.state_dict().items()[i][1].data[:] = mod.state_dict().items()[i][1].data[:] def forward(self,x): x = self.frontend(x) x = self.backend(x) x = self.output_layer(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def make_layers(cfg, in_channels = 3, batch_norm=False, dilation=False): if dilation: d_rate = 2 else: d_rate = 1 layers = [] for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=d_rate, dilation=d_rate) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers)