55 lines
No EOL
1.6 KiB
Python
55 lines
No EOL
1.6 KiB
Python
# Glue layer for transforming whole pictures into 384x384 sequence for encoder input
|
|
from dataclasses import dataclass
|
|
from itertools import product
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchvision
|
|
from torchvision import transforms
|
|
|
|
import numpy as np
|
|
from torchvision.transforms import v2
|
|
|
|
# The v2 way, apparantly. [1]
|
|
class SquareCropTransformLayer(nn.Module):
|
|
def __init__(self, crop_size: int):
|
|
super(SquareCropTransformLayer, self).__init__()
|
|
self.crop_size = crop_size
|
|
|
|
def forward(
|
|
self,
|
|
x_: torch.Tensor,
|
|
kpoints_: torch.Tensor
|
|
) -> (torch.Tensor, torch.Tensor):
|
|
# Here, x_ & kpoints_ already applied affine transform.
|
|
assert len(x_.shape) == 4
|
|
batch_size, channels, height, width = x_.shape
|
|
h_split_count = height // self.crop_size
|
|
w_split_count = width // self.crop_size
|
|
|
|
# Perform identical splits -- note kpoints_ does not have C dimension!
|
|
ret_x = x_.view(
|
|
batch_size * h_split_count * w_split_count,
|
|
channels,
|
|
self.crop_size,
|
|
self.crop_size,
|
|
)
|
|
split_t = kpoints_.view(
|
|
batch_size * h_split_count * w_split_count,
|
|
self.crop_size,
|
|
self.crop_size,
|
|
)
|
|
|
|
# Sum into gt_count
|
|
ret_gt_count = (torch
|
|
.sum(split_t.view(split_t.size(0), -1), dim=1)
|
|
.unsqueeze(1)
|
|
)
|
|
|
|
return ret_x, ret_gt_count
|
|
|
|
"""
|
|
References:
|
|
[1] https://pytorch.org/vision/stable/auto_examples/transforms/plot_custom_transforms.html
|
|
""" |