mlp-project/network/stn.py
2024-03-06 20:44:37 +00:00

232 lines
7.7 KiB
Python

# stole from pytorch tutorial
# "Great artists steal" -- they say,
# but thieves also steal so you know :P
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
class STNet(nn.Module):
def __init__(self, input_size: torch.Size):
super(STNet, self).__init__()
# Sanity check
assert 5 > len(input_size) > 2 # single or batch ([N, ]C, H, W)
if len(input_size) == 3:
channels, height, width = input_size
_dummy_size_ = torch.Size([1]) + input_size
else:
channels, height, width = input_size[1:]
_dummy_size_ = input_size
# shape checking
_dummy_x_ = torch.zeros(_dummy_size_)
# (3.1) Spatial transformer localization-network
self.localization_net = nn.Sequential( # (N, C, H, W)
nn.Conv2d(channels, 8, kernel_size=7), # (N, 8, H-6, W-6)
nn.MaxPool2d(2, stride=2), # (N, 8, (H-6)/2, (W-6)/2)
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5), # (N, 10, ((H-6)/2)-4, ((W-6)/2)-4)
nn.MaxPool2d(2, stride=2), # (N, 10, (((H-6)/2)-4)/2, (((H-6)/2)-4)/2)
nn.ReLU(True)
) # -> (N, 10, (((H-6)/2)-4)/2, (((H-6)/2)-4)/2)
_dummy_x_ = self.localization_net(_dummy_x_)
self._loc_net_out_shape = _dummy_x_.shape[1:]
# (3.2) Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
# XXX: Dimensionality reduction across channels or not?
nn.Linear(np.prod(self._loc_net_out_shape), 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
) # -> (6,)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(
torch.tensor(
[1, 0, 0,
0, 1, 0],
dtype=torch.float
)
)
_dummy_x_ = self.fc_loc(
_dummy_x_.view(-1, np.prod(self._loc_net_out_shape))
)
return
# Spatial transformer network forward function
def stn(self, x, t):
xs = self.localization_net(x)
xs = xs.view(-1, np.prod(self._loc_net_out_shape)) # -> (N, whatever)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3) # -> (2, 3)
grid = F.affine_grid(theta, x.size(), align_corners=False)
x = F.grid_sample(x, grid, align_corners=False)
# Do the same transformation to t sans training
with torch.no_grad():
t = t.view(t.size(0), 1, t.size(1), t.size(2))
t = F.grid_sample(t, grid, align_corners=False)
t = t.squeeze(1)
return x, t
def forward(self, x, t):
# print("STN: {} | {}".format(x.shape, t.shape))
# transform the input, do nothing else
return self.stn(x, t)
if __name__ == "__main__":
class STNetDebug(STNet):
def __init__(self, input_size: torch.Size):
super(STNetDebug, self).__init__(input_size)
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
# Transform the input
x = self.stn(x)
# Perform usual forward pass for MNIST
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_loader = torch.utils.data.DataLoader(
dataset=datasets.MNIST(
root="./synchronous/",
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.1307, ), (.3081, ))
]),
),
batch_size=64,
shuffle=True,
num_workers=4,
)
valid_loader = torch.utils.data.DataLoader(
dataset=datasets.MNIST(
root = "./synchronous/",
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.1307, ), (.3081, ))
]),
),
batch_size=64,
shuffle=True,
num_workers=4,
)
shape_of_input = next(iter(train_loader))[0].shape
model = STNetDebug(shape_of_input).to(device)
optimizer = optim.SGD(model.parameters(), lr=.01)
def train(epoch):
model.train()
for i, (x_, t_) in enumerate(train_loader):
# XXX: x_.shape == (N, C, H, W)
# Inference
x_, t_ = x_.to(device), t_.to(device)
optimizer.zero_grad()
y_ = model(x_)
# Backprop
l_ = F.nll_loss(y_, t_)
l_.backward()
optimizer.step()
if i % 500 == 0:
print("Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
i * len(x_),
len(train_loader.dataset),
100. * i / len(train_loader),
l_.item()
))
def valid():
with torch.no_grad():
model.eval()
valid_loss = 0
correct = 0
for x_, t_ in valid_loader:
x_, t_ = x_.to(device), t_.to(device)
y_ = model(x_)
# Sum batch loss
valid_loss += F.nll_loss(y_, t_, size_average=False).item()
pred = y_.max(1, keepdim=True)[1]
correct += pred.eq(t_.view_as(pred)).sum().item()
valid_loss /= len(valid_loader.dataset)
print("\nValid set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n"
.format(
valid_loss, correct, len(valid_loader.dataset),
100. * correct / len(valid_loader.dataset)
)
)
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(valid_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(10):
train(epoch + 1)
valid()
# Visualize the STN transformation on some input batch
visualize_stn()
plt.ioff()
plt.show()