
Analysis of Software-Maintained Cache
Coherency in ARMv8-A for Cross-Architectural

DSM Systems: The Quintessential

Zhengyi Chen

April 25, 2024



Why study this, specifically?

▶ Amir Noohi (Prof. Barbalace’s PhD student) currently works
on in-kernel distributed shared memory system implemented
over RDMA.

▶ We agree that cache coherency implementation and overhead
is an important consideration for such a system to be
cross-architectural (e.g., x86 vs. ARM64).

▶ Unlike x86, ARM64 (as well as e.g. RISC-V) does not
guarantee hardware cache coherence:
▶ ARM’s “SystemReady” program requires such CPU/SoCs to

be cache coherent at hardware level.
▶ However, to my knowledge this is not the case across all ARM

SoCs, especially as ARM64 PCs are becoming more prevalent.



Contributions

In this paper, I:

▶ Identified and exposed the in-Linux-kernel cache coherence
maintenance implementation for ARM64 architecture (as used
by e.g. RDMA drivers);

▶ Wrote a kernel module to perform performance tests on
exposed mechanism, over both virtualized and server setups.



Cache Coherence in ARM64 & Linux Kernel

▶ ARMv8-A/R defines Point-of-Coherence (PoC ) as the point
at which all observers of memory will observe the same copy
of a memory location.

▶ In Linux kernel (v6.7.0), this was in turn implemented as
assembly macro dcache [clean|inval] poc, inside
arch/arm64/mm/cache.S.
▶ This was then called by Linux kernel’s DMA API, e.g.

dma sync single for cpu.

▶ For testing purposes, expose the assembly macro inside a C
function symbol wrapper for dynamic ftrace support.



Experiment Setup: Kernel Module

▶ A simple kernel module for shared memory is written to test
the latency of the exposed assembly macro via ftrace/bpf.

▶ A character device is exposed to userspace with mmap support.

▶ Allocation size on driver end can be adjusted dynamically for
testing cache coherence latency over variable-sized contiguous
allocation.

▶ Userspace programs can then adjust size of mmap for testing
cache coherence latency over non-contiguous allocations.

▶ On .close (e.g. on munmap by userspace), allocations are
flushed for PoC coherency. . .
▶ As is the case for DMA memory, described prior.



Experiment Setup: Testbench

▶ Tests conducted mostly on QEMU virt-8.0 platform on x86
host.

▶ Some tests conducted on Ampere Altra server system. . .
▶ However, Ampere Altra is SystemReady -certified – i.e.,

supports hardware level cache coherence.
▶ Latencies collected on this system hence may be

non-representative of real performance.

▶ Ideally wider range of test setups should be explored beyond
the contributions of this paper.



Results: Summary

▶ Constant allocation size, variable mmap size: no significant
difference in per-contiguous-memory-area cache coherence
latency.

▶ Variable allocation size:
▶ Latency does not grow linearly with increase in contiguous

allocation size.
▶ In general, latency remains within the same order-of-magnitude

up to 26 contiguous pages.
▶ For larger contiguous pages, latency due to cache coherence

may be amortized by less allocations and page fault handlings
required (implementation-specific?).

▶ In general, a hypothetical DSM system should prefer using
larger contiguous allocations (which seems logical).


