Analysis of Software-Maintained Cache
Coherency in ARMv8-A for Cross-Architectural
DSM Systems: The Quintessential

Zhengyi Chen

April 25, 2024



Why study this, specifically?

» Amir Noohi (Prof. Barbalace's PhD student) currently works
on in-kernel distributed shared memory system implemented
over RDMA.

> We agree that cache coherency implementation and overhead
is an important consideration for such a system to be
cross-architectural (e.g., x86 vs. ARM64).

» Unlike x86, ARM64 (as well as e.g. RISC-V) does not
guarantee hardware cache coherence:

» ARM's “SystemReady” program requires such CPU/SoCs to
be cache coherent at hardware level.

» However, to my knowledge this is not the case across all ARM
SoCs, especially as ARM64 PCs are becoming more prevalent.



Contributions

In this paper, I:

» Identified and exposed the in-Linux-kernel cache coherence
maintenance implementation for ARM64 architecture (as used
by e.g. RDMA drivers);

> Wrote a kernel module to perform performance tests on
exposed mechanism, over both virtualized and server setups.



Cache Coherence in ARM64 & Linux Kernel

» ARMv8-A/R defines Point-of-Coherence (PoC) as the point
at which all observers of memory will observe the same copy
of a memory location.

» In Linux kernel (v6.7.0), this was in turn implemented as

assembly macro dcache_[clean|inval] _poc, inside
arch/arm64/mm/cache.S.

» This was then called by Linux kernel's DMA API, e.g.
dma_sync_single_for_cpu.
» For testing purposes, expose the assembly macro inside a C
function symbol wrapper for dynamic ftrace support.



Experiment Setup: Kernel Module

» A simple kernel module for shared memory is written to test
the latency of the exposed assembly macro via ftrace/bpf.
P A character device is exposed to userspace with mmap support.

» Allocation size on driver end can be adjusted dynamically for
testing cache coherence latency over variable-sized contiguous
allocation.

» Userspace programs can then adjust size of mmap for testing
cache coherence latency over non-contiguous allocations.

» On .close (e.g. on munmap by userspace), allocations are
flushed for PoC coherency. ..

» As is the case for DMA memory, described prior.



Experiment Setup: Testbench

» Tests conducted mostly on QEMU virt-8.0 platform on x86
host.

» Some tests conducted on Ampere Altra server system. ..

» However, Ampere Altra is SystemReady-certified — i.e.,
supports hardware level cache coherence.

» Latencies collected on this system hence may be
non-representative of real performance.

» Ideally wider range of test setups should be explored beyond
the contributions of this paper.



Results: Summary

» Constant allocation size, variable mmap size: no significant
difference in per-contiguous-memory-area cache coherence
latency.

» Variable allocation size:

» Latency does not grow linearly with increase in contiguous
allocation size.

» In general, latency remains within the same order-of-magnitude
up to 2% contiguous pages.

» For larger contiguous pages, latency due to cache coherence
may be amortized by less allocations and page fault handlings
required (implementation-specific?).

» In general, a hypothetical DSM system should prefer using
larger contiguous allocations (which seems logical).



