
Though large-scale cluster systems remain the dominant solution for request
and data-level parallelism [12], there have been a resurgence towards applying
HPC techniques (e.g., DSM) for more efficient heterogeneous computation with
more tightly-coupled heterogeneous nodes providing (hardware) acceleration for
one another [7] [ADD MORE CITATIONS] Within the scope of one node, het-
erogeneous memory management (HMM) enables the use of OS-controlled, uni-
fied memory view into the entire memory landscape across attached devices [11],
all while using the same libc function calls as one would with SMP program-
ming, the underlying complexities of memory ownership and locality managed
by the OS kernel.

Nevertheless, while HMM promises a distributed shared memory approach
towards exposing CPU and peripheral memory, applications (drivers and front-
ends) that exploit HMM to provide ergonomic programming models remain
fragmented and narrowly-focused. Existing efforts in exploiting HMM in Linux
predominantly focus on exposing global address space abstraction to GPU mem-
ory – a largely non-coordinated effort surrounding both in-tree and proprietary
code [10, 1]. Limited effort have been done on incorporating HMM into other
variants of accelerators in various system topologies.

Orthogonally, allocation of hardware accelerator resources in a cluster com-
puting environment becomes difficult when the required hardware acceleration
resources of one workload cannot be easily determined and/or isolated. Within
a cluster system there may exist a large amount of general-purpose worker nodes
and limited amount of hardware-accelerated nodes. Further, it is possible that
every workload performed on this cluster wishes for hardware acceleration from
time to time, but never for a relatively long time. Many job scheduling mech-
anisms within a cluster move data near computation by migrating the entire
job/container between general-purpose and accelerator nodes [24, 23]. This way
of migration naturally incurs large overhead – accelerator nodes which strictly
perform in-memory computing without ever needing to touch the container’s
filesystem should not have to install the entire filesystem locally, for starters.
Moreover, must all computations be near data? [21], for example, shows that
RDMA over fast network interfaces (25×8Gbps) result negligible impact on tail
latencies but high impact on throughput when bandwidth is maximized.

This thesis paper builds upon an ongoing research effort in implementing a
tightly coupled cluster where HMM abstractions allow for transparent RDMA
access from accelerator nodes to local data and data migration near computa-
tion, focusing on the effect of replacement policies on balancing the cost be-
tween near-data and far-data computation between home node and accelerator
node. Specifically, this paper explores the possibility of implementing shared
page movement between home and accelerator nodes to enable efficient memory
over-commit without the I/O-intensive swapping overhead.

The rest of the chapter is structured as follows. . .

1



1 Experiences from Software DSM

The majority of contributions to the study of software DSM systems come from
the 1990s [6, 9, 14, 13]. These developments follow from the success of the
Stanford DASH project in the late 1980s – a hardware distributed shared mem-
ory (i.e., NUMA) implementation of a multiprocessor that first proposed the
directory-based protocol for cache coherence, which stores the ownership infor-
mation of cache lines to reduce unnecessary communication that prevented SMP
processors from scaling out [18].

While developments in hardware DSM materialized into a universal ap-
proach to cache-coherence in contemporary many-core processors (e.g., Am-
pere Altra[2]), software DSMs in clustered computing languished in favor of
loosely-coupled nodes performing data-parallel computation, communicating via
message-passing. Bandwidth limitations with the network interfaces of the late
1990s was insufficient to support the high traffic incurred by DSM and its pro-
gramming model [25, 19].

New developments in network interfaces provides much improved bandwidth
and latency compared to ethernet in the 1990s. RDMA-capable NICs have been
shown to improve the training efficiency sixfold compared to distributed Ten-
sorFlow via RPC, scaling positively over non-distributed training [16]. Similar
results have been observed for Spark[20] and what?. Consequently, there have
been a resurgence of interest in software DSM systems and their corresponding
programming models [22, 8].

1.1 Munin: Multiple Consistency Protocols

Munin[9] is one of the older developments in software DSM systems. The au-
thors of Munin identify that false-sharing, occurring due to multiple processors
writing to different offsets of the same page triggering invalidations, is strongly
detrimental to the performance of shared-memory systems. To combat this,
Munin exposes annotations as part of its programming model to facilitate mul-
tiple consistency protocols on top of release consistency. An immutable shared
memory object across readers, for example, can be safely copied without concern
for coherence between processors. On the other hand, the write-shared annota-
tion explicates that a memory object is written by multiple processors without
synchronization – i.e., the programmer guarantees that only false-sharing occurs
within this granularity. Annotations such as these explicitly disables subsets of
consistency procedures to reduce communication in the network fabric, thereby
improving the performance of the DSM system.

Perhaps most importantly, experiences from Munin show that restricting the
flexibility of programming model can lead to more performant coherence models,
as corroborated by the now-foundational Resilient Distributed Database paper
[27] – which powered many now-popular scalable data processing frameworks
such as Hadoop MapReduce[3] and APACHE Spark [4]. “To achieve fault tol-
erance efficiently, RDDs provide a restricted form of shared memory [based
on]. . . transformations rather than. . . updates to shared state” [27]. This al-

2



lows for the use of transformation logs to cheaply synchronize states between
unshared address spaces – a much desired property for highly scalable, loosely-
coupled clustered systems.

1.2 Treadmarks: Multi-Writer Protocol

Treadmarks[6] is a software DSM developed in 1996

2 HPC and Partitioned Global Address Space

Improvement in NIC bandwidth and transfer rate allows for applications that
expose global address space, as well as RDMA technologies that leverage single-
writer protocols over hierarchical memory nodes. [GAS and PGAS (Parti-
tioned GAS) technologies for example Openshmem, OpenMPI, Cray
Chapel, etc. that leverage specially-linked memory sections and /dev/shm

to abstract away RDMA access].
Contemporary works on DSM systems focus more on leveraging hardware

advancements to provide fast and/or seamless software support. Adrias [21], for
example, implements a complex system for memory disaggregation over multiple
compute nodes connected via the ThymesisFlow -based RDMA fabric, where
they observed significant performance improvements over existing data-intensive
processing frameworks, for example APACHE Spark, Memcached, and Redis,
over no-disaggregation (i.e., using node-local memory only, similar to cluster
computing) systems.

2.1 Programming Model

2.2 Move Data to Process, or Move Process to Data?

(TBD – The former is costly for data-intensive computation, but the latter may
be impossible for certain tasks, and greatly hardens the replacement problem.)

3 Replacement Policy

In general, three variants of replacement strategies have been proposed for either
generic cache block replacement problems, or specific use-cases where contextual
factors can facilitate more efficient cache resource allocation:

• General-Purpose Replacement Algorithms, for example LRU.

• Cost-Model Analysis

• Probabilistic and Learned Algorithms

3



3.1 General-Purpose Replacement Algorithms

Practically speaking, in the general case of the cache replacement problem, we
desire to predict the re-reference interval of a cache block [15]. This follows from
the Belady’s algorithm – the optimal case for the ideal replacement problem
occurs when, at eviction time, the entry with the highest re-reference interval is
replaced. Under this framework, therefore, the commonly-used LRU algorithm
could be seen as a heuristic where the re-reference interval for each entry is
predicted to be immediate. Fortunately, memory access traces of real computer
systems agree with this tendency due to spatial locality [source]. (Real systems
are complex, however, and there are other behaviors...) On the other hand, the
hypothetical LFU algorithm is a heuristic that captures frequency. [. . . ] While
the textbook LFU algorithm suffers from needing to maintain a priority-queue
for frequency analysis, it was nevertheless useful for keeping recurrent (though
non-recent) blocks from being evicted from the cache [source].

Derivatives from the LRU algorithm attempts to balance between frequency
and recency. [Talk about LRU-K, LRU-2Q, LRU-MQ, LIRS, ARC here
. . . ]

Advancements in parallel/concurrent systems had led to a rediscovery of
the benefits of using FIFO-derived replacement policies over their LRU/LFU
counterparts, as book-keeping operations on the uniform LRU/LFU state proves
to be (1) difficult for synchronization and, relatedly, (2) cache-unfriendly [26].
[Talk about FIFO, FIFO-CLOCK, FIFO-CAR, FIFO-QuickDemotion,
and Dueling CLOCK here . . . ]

Finally, real-life experiences have shown the need to reduce CPU time in
practical applications, owing from one simple observation – during the fetch-
execution cycle, all processors perform blocking I/O on the memory. A cache-
unfriendly design, despite its hypothetical optimality, could nevertheless degrade
the performance of a system during low-memory situations. In fact, this proves
to be the driving motivation behind Linux’s transition away from the old LRU-
2Q page replacement algorithm into the more coarse-grained Multi-generation
LRU algorithm, which has been mainlined since v6.1.

3.2 Cost-Model Analysis

The ideal case for the replacement problem fails to account for invalidation of
cache entries. It also assumes for a uniform, dual-hierarchical cache-store model
that is insufficient to capture the heterogeneity of today’s massively-parallel,
distributed systems. High-speed network interfaces are capable of exposing
RDMA interfaces between computer nodes, which amount to almost twice as
fast RDMA transfer when compared to swapping over the kernel I/O stack,
while software that bypass the kernel I/O stack is capable of stretching the
bandwidth advantage even more (source). This creates an interesting network
topology between RDMA-enabled nodes, where, in addition to swapping at low-
memory situations, the node may opt to “swap” or simply drop the physical
page in order to lessen the cost of page misses.

4



[Talk about GreedyDual, GDSF, BCL, Amortization]
Traditionally, replacement policies based on cost-model analysis were utilized

in content-delivery networks, which had different consistency models compared
to finer-grained systems. HTTP servers need not pertain to strong consistency
models, as out-of-date information is considered permissible, and single-writer
scenarios are common. Consequently, most replacement policies for static con-
tent servers, while making strong distinction towards network topology, fails to
concern for the cases where an entry might become invalidated, let along multi-
writer protocols. One early paper [17] examines the efficacy of using page fault
frequency as an indicator of preference towards working set inclusion (which I
personally think is highly flawed – to be explained). Another paper [5] explores
the possibility of taking page fault into consideration for eviction, but fails to
go beyond the obvious implication that pages that have been faulted must be
evicted.

The concept of cost models for RDMA and NUMA systems are relatively
underdeveloped, too. (Expand)

3.3 Probabilistic and Learned Algorithms for Cache Re-
placement

Finally, machine learning techniques and low-cost probabilistic approaches have
been applied on the ideal cache replacement problem with some level of success.
[Talk about LeCaR, CACHEUS here].

4 Cache Coherence and Consistency in DSM
Systems

(I need to read more into this. Most of the contribution comes from CPU
caches, less so for DSM systems.) [Talk about JIAJIA and Treadmark’s
coherence protocol.]

Consistency and communication protocols naturally affect the cost for each
faulted memory access . . .

[Talk about directory, transactional, scope, and library cache co-
herence, which allow for multi-casted communications at page fault
but all with different levels of book-keeping.]

References

[1] url: https://www.phoronix.com/search/Heterogeneous%20Memory%
20Management.

[2] url: https://uawartifacts.blob.core.windows.net/upload-files/
Altra_Max_Rev_A1_DS_v1_15_20230809_b7cdce449e_424d129849.pdf.

[3] url: https://hadoop.apache.org/.

5



[4] url: https://spark.apache.org/.

[5] J. Aguilar and E.L. Leiss. “A Coherence-Replacement Protocol For Web
Proxy Cache Systems”. In: International Journal of Computers and Appli-
cations 28.1 (2006), pp. 12–18. doi: 10.1080/1206212X.2006.11441783.
eprint: https://doi.org/10.1080/1206212X.2006.11441783. url:
https://doi.org/10.1080/1206212X.2006.11441783.

[6] Cristiana Amza et al. “Treadmarks: Shared memory computing on net-
works of workstations”. In: Computer 29.2 (1996), pp. 18–28.

[7] Javier Cabezas et al. “GPU-SM: shared memory multi-GPU program-
ming”. In: Proceedings of the 8th Workshop on General Purpose Process-
ing using GPUs. 2015, pp. 13–24.

[8] Qingchao Cai et al. “Efficient distributed memory management with RDMA
and caching”. In: Proceedings of the VLDB Endowment 11.11 (2018),
pp. 1604–1617.

[9] John B Carter, John K Bennett, and Willy Zwaenepoel. “Implementation
and performance of Munin”. In: ACM SIGOPS Operating Systems Review
25.5 (1991), pp. 152–164.

[10] Jonathan Corbet.Heterogeneous memory management meets EXPORT SYMBOL GPL().
2018. url: https://lwn.net/Articles/757124/.

[11] Mark Harris. Unified memory for cuda beginners. 2017. url: https://
developer.nvidia.com/blog/unified-memory-cuda-beginners/.

[12] John L Hennessy and David A Patterson. Computer architecture: a quan-
titative approach. Elsevier, 2011.

[13] Weiwu Hu, Weisong Shi, and Zhimin Tang. “JIAJIA: A software DSM
system based on a new cache coherence protocol”. In: High-Performance
Computing and Networking: 7th International Conference, HPCN Eu-
rope 1999 Amsterdam, The Netherlands, April 12–14, 1999 Proceedings
7. Springer. 1999, pp. 461–472.

[14] Ayal Itzkovitz, Assaf Schuster, and Lea Shalev. “Thread migration and
its applications in distributed shared memory systems”. In: Journal of
Systems and Software 42.1 (1998), pp. 71–87.

[15] Aamer Jaleel et al. “High performance cache replacement using re-reference
interval prediction (RRIP)”. In: ACM SIGARCH computer architecture
news 38.3 (2010), pp. 60–71.

[16] Chengfan Jia et al. “Improving the performance of distributed tensor-
flow with RDMA”. In: International Journal of Parallel Programming 46
(2018), pp. 674–685.

[17] Richard P. LaRowe and Carla Schlatter Ellis. “Page placement policies for
NUMA multiprocessors”. In: Journal of Parallel and Distributed Comput-
ing 11.2 (1991), pp. 112–129. issn: 0743-7315. doi: https://doi.org/
10.1016/0743-7315(91)90117-R. url: https://www.sciencedirect.
com/science/article/pii/074373159190117R.

6



[18] Daniel Lenoski et al. “The stanford dash multiprocessor”. In: Computer
25.3 (1992), pp. 63–79.

[19] Honghui Lu et al. “Message passing versus distributed shared memory on
networks of workstations”. In: Supercomputing’95: Proceedings of the 1995
ACM/IEEE Conference on Supercomputing. IEEE. 1995, pp. 37–37.

[20] Xiaoyi Lu et al. “Accelerating spark with RDMA for big data process-
ing: Early experiences”. In: 2014 IEEE 22nd Annual Symposium on High-
Performance Interconnects. IEEE. 2014, pp. 9–16.

[21] Dimosthenis Masouros et al. “Adrias: Interference-Aware Memory Orches-
tration for Disaggregated Cloud Infrastructures”. In: 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE. 2023, pp. 855–869.

[22] Jacob Nelson et al. “{Latency-Tolerant} software distributed shared mem-
ory”. In: 2015 USENIX Annual Technical Conference (USENIX ATC 15).
2015, pp. 291–305.

[23] SeungYong Oh and JongWon Kim. “Stateful Container Migration employ-
ing Checkpoint-based Restoration for Orchestrated Container Clusters”.
In: 2018 International Conference on Information and Communication
Technology Convergence (ICTC). 2018, pp. 25–30. doi: 10.1109/ICTC.
2018.8539562.

[24] Manuel Rodŕıguez-Pascual et al. “Job migration in hpc clusters by means
of checkpoint/restart”. In: The Journal of Supercomputing 75 (2019),
pp. 6517–6541.

[25] Paul Werstein, Mark Pethick, and Zhiyi Huang. “A performance com-
parison of dsm, pvm, and mpi”. In: Proceedings of the Fourth Interna-
tional Conference on Parallel and Distributed Computing, Applications
and Technologies. IEEE. 2003, pp. 476–482.

[26] Juncheng Yang et al. “FIFO can be Better than LRU: the Power of Lazy
Promotion and Quick Demotion”. In: Proceedings of the 19th Workshop
on Hot Topics in Operating Systems. 2023, pp. 70–79.

[27] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing”. In: 9th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 12). San
Jose, CA: USENIX Association, Apr. 2012, pp. 15–28. isbn: 978-931971-
92-8. url: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/zaharia.

7


