
Cache Coherency & Memory Model in
RDMA-Backed Software-Coherent DSM

Zhengyi Chen

January 29, 2024



Table of Contents

1. Overview

2. Design

3. Progress



1. Overview

▶ DSM used to be constrained by NIC bandwidth & transfer
rate (e.g., during the 1990s).

▶ The advent of high(er) transfer rate NICs allows the DSM
idea to be revived.

▶ Orthogonally, hardware acceleration resources are scarce and
highly valuable.
▶ Traditional Scheduling Mechanisms within a Cluster cannot

dynamically allocate hardware accelerators without high
overhead.

▶ Ideally, via high-speed NICs, hardware accelerator could be
statically allocated such that:
▶ Every node have access to the hardware accelerator node in a

time-shared fashion.
▶ Accelerator-attached node can access remote memory much

like attaching accelerator over, say, PCIe.



Heterogeneous Memory Management

▶ HMM facilitates shared address space and transparent data
migration between CPU and peripherals. Specifically:
▶ HMM provides interface for duplicating the CPU page table

with that of the device’s, which are transparently synchronized.
▶ It also provides corresponding struct page representation of

device memory pages, which are faulted between the CPU and
device.

▶ Theoretically, this should allow for devices in remote nodes to
perform HMM using the DMA-capable NIC as a “proxy HMM
device”.

▶ Details of implementation of DSM-over-HMM is beyond this
thesis’s scope.
▶ This thesis focuses on studying and implementing cache

coherency and later, memory model for the DSM subsystem of
this wider, ongoing project.



Cache Coherency, and Why It Matters Here

▶ Cache-incoherent RDMA (e.g., mlx) performs DMA without
synchronization with CPU cache.

▶ We cannot assume MMU to magically automatically maintain
coherence.

▶ At transportation time:
▶ Send to remote: flushes cache into memory before posting

send message.
▶ Receive from remote: invalidate cache entry after worked recv

message.

▶ Example: Linux kernel tree, smbdirect implementation.
▶ smbdirect opportunistically establish SMB over RDMA-capable

network.
▶ smbd post send cleans cache entry prior to posting send

request.
▶ recv done invalidates cache entry after exiting softirq for recv

request (as callback from RDMA driver).



Consistency Model and Protocol

▶ Majority of DSM literatures apply release consistency as the
system’s memory model.

▶ With single-writer protocol, however, the memory model can
be strengthened with little increase in code complexity.
▶ DSPM[1], for example, achieves a de-facto TSO consistency

from its multi-writer release consistency counterpart –
assuming correct memory barriers within each node’s CPU,
distributed writes are never reordered, and distributed reads
can overtake writes.

▶ Consequently, one can easily achieve sequential consistency by
designating the entire write-access duration as a critical
section.

▶ HMM’s “CPU-or-device” data migration model also strongly
implies a single-writer consistency protocol.



2. Design

▶ Designing a DSM necessitates designing:
▶ Consistency Model.
▶ Coherence Protocol and State Machine.
▶ Access Control.

▶ Care needs to be taken to ensure that the in-kernel
implementation is:
▶ Correct,
▶ Performant,
▶ Exploits RDMA’s traits.



Consistency Model



Coherence Protocol



Stateful Nodes



Progress



On-demand Coherency in ARM64

▶ ARMv8 defines two levels of cache coherence:
▶ Point-of-Unification:
▶ Point-of-Coherence:



Kernel Patch for On-demand Coherency



Proof-of-Concept Kernel Module


	1. Overview
	2. Design
	3. Progress

