
Progress Report: Page Cache Consistency Model

Zhengyi Chen

December 6, 2023



Literature Review: (Shan, Tsai, & Zhang. 20171)

▶ Concerns with the sharing of persistent memory –
▶ More or less similar to sharing regular memory, but. . .
▶ Data replication is key ⇒ Multiple data provider.

▶ Supports both Multi-Writer Multi-Reader and Multi-Writer
Single-Writer Protocols
▶ MRMW “support(s) great parallelism”
▶ MRSW enables “stronger consistency”

▶ Makes distinction between 3 variants of nodes:
▶ Commit Node – Node who wishes to commit changes wrt. the

system.
▶ Owner Node – Node(s) who act as data provider for latest

page content.
▶ Manager Node – Node who provide (serialized) write access

control to page.

1Shan, Tsai, and Zhang, “Distributed shared persistent memory”.



Literature Review: (Shan, Tsai, & Zhang. 20172)

▶ For data replication and fault tolerance, necessitates:

1. Commit status logging (akin to journaled file system)
2. Persistent Commit ID
3. Required deg. of replication – each ON shares to N nodes.

▶ Fault tolerance is out of this thesis’s scope. However. . .
▶ Prob. no need for requiring any degree of data replication.
▶ Dropping data replication req. ⇒ no need for replication

comms.
▶ Commit status logging & persistent CID can be helpful &

should not introduce additional comms.

▶ MRSW provides “simpler and more efficient” commits than
MRMW – no concurrent commits to same shared memory
object exists.
▶ Also makes more sense from a CPU-accelerator dichotomy

outlook (ofc. wrt. this thesis’s system).

2Shan, Tsai, and Zhang, “Distributed shared persistent memory”.



MRSW: (Shan, Tsai, & Zhang. 20173)

Note: CN: Node 1, MN: Node 2, ON: Node 2 & 3. Node 4 may or
may not already share the committed page prior to acquire.

3Shan, Tsai, and Zhang, “Distributed shared persistent memory”.



Literature Review: (Ramesh. 2023)

▶ Popcorn-derived.
▶ Sequential consistency, MRSW protocol offloaded onto sNIC:

▶ DSM protocol processor implemented on sNIC FPGA core.
▶ sNIC keeps track of memory ownership, status, R/W

permissions at page level granularity.
▶ Removes the need for distinct memory management nodes.
▶ (i.e., the sNIC IS the memory management node – except of

course allocation).

▶ Similar idea occurred in Concordia4:
▶ Concurrency control and multicast offloaded to network switch.
▶ Authors claim this is more scalable (?)

5

4Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.

5Ramesh., “SNIC-DSM: SmartNIC based DSM Infrastructure for
Heterogeneous-ISA Machines”



Literature Review: (Endo, Sato, & Taura. 2020)6

▶ MRMW: use timestamps to store reader “intervals”.
▶ Introduces the home-migration concept:

▶ At commit, make the CN the home node instead of
invalidating the home node.

▶ This removes communications needed for diff-merging at home
node – this can be done locally.

▶ No support for multiple home nodes.

▶ No performance improvement over PGAS programming
framework (OpenMPI).

6Endo, Sato, and Taura, “MENPS: A Decentralized Distributed Shared
Memory Exploiting RDMA”.



Literature Review: (Endo, Sato, & Taura. 2020)7

7Endo, Sato, and Taura, “MENPS: A Decentralized Distributed Shared
Memory Exploiting RDMA”.



The System

▶ Remote node(s) abstracted as shared memory device
“/dev/rshm”

▶ Heterogeneous Memory Management (HMM) ensures unified
address space between local and device memory.

▶ Migration of pages between CPU and “device” is transparent
to userspace – no need for copying/mapping.

▶ In reality, “/dev/rshm” a handler for RDMA access between
nodes.
▶ This involves remote read/write and moving page content

between nodes.
▶ Local node serves as home node & address space host at share

time.
▶ Remote nodes attached on /dev/rshm as accelerator.



The Problem: Consistency Protocol

▶ Single-Writer, Multiple-Reader Protocol

▶ Need to be performant. . . with some ergonomics
▶ Two Hypothetical Protocols:

▶ “RwLock” Consistency Protocol
▶ Acq-Rel Consistency Protocol

▶ Former ensures strong single-writer consistency
▶ – Also easier to program with!

▶ Latter allows concurrent in-memory non-committal
computation



“RwLock” Consistency Protocol

Similar to a read-write lock where:

▶ Multiple readers can exist for a clean page – the page is
shared.

▶ Only one write is allowed for a clean page – the page becomes
exclusive.

▶ For one writer node to be allowed sole write access to some
page, all other readers need to have their page cache
invalidated.

▶ While the sole writer node has not yet committed, no other
reader or writer nodes are allowed to be served this page.

▶ When the sole writer commits, it becomes the new home node
which serves the updated page content.



“RwLock” Consistency Protocol

P1

P2

P3

P1: Allocated X — PT Home; Access Ctrl.

Read(x) x; 
Shared

Write(x)

Inv(x) Read(x)

x; 
Shared; 
NewHome

1. Read 2. Write-Invalidate 3. Post-Inv Read

x; Excl.

Note: The blue arrow should be acknowledged via commit by P3
to P1 – forgot to put the ack. arrow in.



Acq-Rel Consistency Protocol

In RwLock’s case, read requests result in installation of read-only
pages at remote nodes.
Alternatively, this protocol allows read/write pages to be installed
at remote nodes at read time. Such writes are non-committal and
cannot be synced with the entire system.
To summarize:

▶ “Readers” can write to its locally installed page without any
means to synchronize the change.

▶ “Writers” need to acquire global write access from the PT
node, which invalidates all shared pages.

▶ i.e., Instead of write-invalidate, perform acquire-invalidate.

This may require pages to be marked as CoW if the sharer wants
also to act as a home node.



Consistency Protocol: Knobs and Mods

We can modify these two protocols further as follows:
▶ Multi-home Protocol: instead of having one home at a time,

have multiple homes (e.g., when writer commits) to prevent
network bottleneck.
▶ Extra metadata can limit scalability (e.g., granularity of

directories)

▶ Auto-share: Automatically share pages at commit time using
1-way communications.
▶ Potential for communication reduction – debatable.



Why this design?

▶ Largely inspired by DSPM8.

▶ Removed arrows for enforced data duplication – duplication is
solely on-demand.

▶ Introduces transitional state “T”:
▶ Used to flag a page as unserviceable – visible only at MN.
▶ All read/write access to T-page is kept on hold until MN

receives commit msg.
▶ After commit, MN forwards queued R/W access to moved

home.
▶ This (at least) maintains RAW, WAW data dependency for

whichever issue serialization.
▶ Removing T allows stale data to be served – violates RAW for

better throughput.

▶ Extensible (as mentioned in prior page).

8Shan, Tsai, and Zhang, “Distributed shared persistent memory”.



Why not this design?

At the very least. . .
▶ De-coupled home and access-management nodes require:

▶ Each home node need to be MN-aware (easy).
▶ MN need to be home-aware (also easy with single-writer, but

spatial complexity is a concern):
▶ Naive directory scheme is not scalable.
▶ Coarse directory scheme (e.g., SGI Origin 2000) is wasteful

(but may be the fastest in practice).
▶ Distributed directory scheme may provide terrible latency.
▶ More sophisticated schemes are possible but needs work &

experimentation.

▶ Strict consistency limits throughput.



What about Consistency Model?

▶ The weaker a consistency model is, the more difficult it is to
program with.
▶ Weak ordering architectures (e.g., ARMv8) more or less

depends on compiler/interpreter to emit barriers as see fit9.
▶ Bad for usability/portability – programs may need to be

compiled using a modified toolchain, else need to add these
synchronization instructions/function calls everywhere.

▶ 10 uses Partial Store Order.
▶ Preserves RAR, WAR – “synchronous read. . . asynchronous

write”
▶ Easier to use than relaxed ordering.

▶ 11 uses strong consistency, but warns about its scalability.

9Haynes, Sequential consistency in armv8.
10Cai et al., “Efficient distributed memory management with RDMA and

caching”.
11Wang et al., “Concordia: Distributed shared memory with {In-Network}

cache coherence”.



Consistency Model: Cont.

▶ Similar to Concordia12, the proposed protocols also assume
strong consistency.

▶ Further work needed to see how to adapt these protocols for
weaker consistency models.

12Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.


