
Though large-scale cluster systems remain the dominant solution for request
and data-level parallelism [14], there have been a resurgence towards apply-
ing HPC techniques (e.g., DSM) for more efficient heterogeneous computation
with tighter-coupled heterogeneous nodes providing (hardware) acceleration for
one another [7, 25, 19] Orthogonally, within the scope of one motherboard,
heterogeneous memory management (HMM) enables the use of OS-controlled,
unified memory view across both main memory and device memory [13], all
while using the same libc function calls as one would with SMP programming,
the underlying complexities of memory ownership and data placement auto-
matically managed by the OS kernel. On the other hand, while HMM promises
a distributed shared memory approach towards exposing CPU and peripheral
memory, applications (drivers and front-ends) that exploit HMM to provide
ergonomic programming models remain fragmented and narrowly-focused. Ex-
isting efforts in exploiting HMM in Linux predominantly focus on exposing
global address space abstraction to GPU memory – a largely non-coordinated
effort surrounding both in-tree and proprietary code [10, 1]. Limited effort have
been done on incorporating HMM into other variants of accelerators in various
system topologies.

Orthogonally, allocation of hardware accelerator resources in a cluster com-
puting environment becomes difficult when the required hardware accelerator
resources of one workload cannot be easily determined and/or isolated as a
“stage” of computation. Within a cluster system there may exist a large amount
of general-purpose worker nodes and limited amount of hardware-accelerated
nodes. Further, it is possible that every workload performed on this cluster asks
for hardware acceleration from time to time, but never for a relatively long time.
Many job scheduling mechanisms within a cluster move data near computation
by migrating the entire job/container between general-purpose and accelerator
nodes [30, 28]. This way of migration naturally incurs large overhead – acceler-
ator nodes which strictly perform computation on data in memory without ever
needing to touch the container’s filesystem should not have to install the entire
filesystem locally, for starters. Moreover, must all computations be performed
near data? [26], for example, shows that RDMA over fast network interfaces
(25 Gbps × 8), when compared to node-local setups, result in negligible impact
on tail latencies but high impact on throughput when bandwidth is maximized.

This thesis paper builds upon an ongoing research effort in implementing a
tightly coupled cluster where HMM abstractions allow for transparent RDMA
access from accelerator nodes to local data and migration of data near computa-
tion, leveraging different consistency model and coherency protocols to amortize
the communication cost for shared data. More specifically, this thesis explores
the following:

• The effect of cache coherency maintenance, specifically OS-initiated, on
RDMA programs.

• Implementation of cache coherency in cache-incoherent kernel-side RDMA
clients.
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• Discussion of memory models and coherence protocol designs for a single-
writer, multi-reader RDMA-based DSM system.

The rest of the chapter is structured as follows:

• We identify and discuss notable developments in software-implemented
DSM systems, and thus identify key features of contemporary advance-
ments in DSM techniques that differentiate them from their predecessors.

• We identify alternative (shared memory) programming paradigms and
compare them with DSM, which sought to provide transparent shared
address space among participating nodes.

• We give an overview of coherency protocol and consistency models for
multi-sharer DSM systems.

• We provide a primer to cache coherency in ARM64 systems, which do not
guarantee cache-coherent DMA, as opposed to x86 systems [34].

1 Experiences from Software DSM

A majority of contributions to software DSM systems come from the 1990s [6,
9, 16, 15]. These developments follow from the success of the Stanford DASH
project in the late 1980s – a hardware distributed shared memory (specifically
NUMA) implementation of a multiprocessor that first proposed the directory-
based protocol for cache coherence, which stores the ownership information of
cache lines to reduce unnecessary communication that prevented previous mul-
tiprocessors from scaling out [21].

While developments in hardware DSM materialized into a universal ap-
proach to cache-coherence in contemporary many-core processors (e.g., Am-
pere Altra[2]), software DSMs in clustered computing languished in favor of
loosely-coupled nodes performing data-parallel computation, communicating via
message-passing. Bandwidth limitations with the network interfaces of the late
1990s was insufficient to support the high traffic incurred by DSM and its pro-
gramming model [35, 23].

New developments in network interfaces provides much improved bandwidth
and latency compared to ethernet in the 1990s. RDMA-capable NICs have been
shown to improve the training efficiency sixfold compared to distributed Ten-
sorFlow via RPC, scaling positively over non-distributed training [18]. Similar
results have been observed for APACHE Spark [24] and SMBDirect [22]. Con-
sequently, there have been a resurgence of interest in software DSM systems and
programming models [27, 8].

1.1 Munin: Multi-Consistency Protocol

Munin[9] is one of the older developments in software DSM systems. The au-
thors of Munin identify that false-sharing, occurring due to multiple processors
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writing to different offsets of the same page triggering invalidations, is strongly
detrimental to the performance of shared-memory systems. To combat this,
Munin exposes annotations as part of its programming model to facilitate mul-
tiple consistency protocols on top of release consistency. An immutable shared
memory object across readers, for example, can be safely copied without concern
for coherence between processors. On the other hand, the write-shared annota-
tion explicates that a memory object is written by multiple processors without
synchronization – i.e., the programmer guarantees that only false-sharing occurs
within this granularity. Annotations such as these explicitly disables subsets of
consistency procedures to reduce communication in the network fabric, thereby
improving the performance of the DSM system.

Perhaps most importantly, experiences from Munin show that restricting
the flexibility of programming model can lead to more performant coherence
models, as exhibited by the now-foundational Resilient Distributed Database
paper [37] which powered many now-popular scalable data processing frame-
works such as Hadoop MapReduce [3] and APACHE Spark [4]. “To achieve
fault tolerance efficiently, RDDs provide a restricted form of shared memory
[based on]. . . transformations rather than. . . updates to shared state” [37]. This
allows for the use of transformation logs to cheaply synchronize states between
unshared address spaces – a much desired property for highly scalable, loosely-
coupled clustered systems.

1.2 Treadmarks: Multi-Writer Protocol

Treadmarks[6] is a software DSM system developed in 1996, which featured an
intricate interval -based multi-writer protocol that allows multiple nodes to write
to the same page without false-sharing. The system follows a release-consistent
memory model, which requires the use of either locks (via acquire, release) or
barriers (via barrier) to synchronize. Each interval represents a time period
in-between page creation, release to another processor, or a barrier; they
also each correspond to a write notice, which are used for page invalidation.
Each acquire message is sent to the statically-assigned lock-manager node,
which forwards the message to the last releaser. The last releaser computes the
outstanding write notices and piggy-backs them back for the acquirer to inval-
idate its own cached page entry, thus signifying entry into the critical section.
Consistency information, including write notices, intervals, and page diffs, are
routinely garbage-collected which forces cached pages in each node to become
validated.

Compared to Treadmarks, the system described in this paper uses a single-
writer protocol, thus eliminating the concept of “intervals” – with regards to
synchronization, each page can be either in-sync (in which case they can be
safely shared) or out-of-sync (in which case they must be invalidated/updated).
This comes with the following advantage:

• Less metadata for consistency-keeping.

• More adherent to the CPU-accelerator dichotomy model.
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• Much simpler coherence protocol, which reduces communication cost.

In view of the (still) disparate throughput and latency differences between
local and remote memory access [8], the simpler coherence protocol of single-
writer protocol should provide better performance on the critical paths of remote
memory access.

1.3 Hotpot: Single-Writer & Data Replication

Newer works such as Hotpot [31] apply distributed shared memory techniques
on persistent memory to provide “transparent memory accesses, data persis-
tence, data reliability, and high availability”. Leveraging on persistent memory
devices allow DSM applications to bypass checkpoints to block device storage
[31], ensuring both distributed cache coherence and data reliability at the same
time [31].

We specifically discuss the single-writer portion of its coherence protocol.
The data reliability guarantees proposed by the Hotpot system requires each
shared page to be replicated to some degree of replication. Nodes who always
store latest replication of shared pages are referred to as “owner nodes”, which
arbitrate other nodes to store more replications in order to reach the degree
of replication quota. At acquisition time, the acquiring node asks the access-
management node for single-writer access to shared page, who grants it if no
other critical section exists, alongside list of current owner nodes. At release
time, the releaser first commits its changes to all owner nodes which, in turn,
commits its received changes across lesser sharers to achieve the required degree
of replication. These two operations are all acknowledged back in reverse order.
Once all acknowledgements are received from owner nodes by commit node, the
releaser tells them to delete their commit logs and, finally, tells the manager
node to exit critical section.

The required degree of replication and logged commit transaction until ex-
plicit deletion facilitate crash recovery at the expense of worse performance
over release-time I/O. While the study of crash recovery with respect to shared
memory systems is out of the scope of this thesis, this paper provides a good
framework for a correct coherence protocol for a single-writer, multiple-reader
shared memory system, particularly when the protocol needs to cater for a great
variety of nodes each with their own memory preferences (e.g., write-update vs.
write-invalidate, prefetching, etc.).

1.4 MENPS: A Return to DSM

MENPS[12] leverages new RDMA-capable interconnects as a proof-of-concept
that DSM systems and programming models can be as efficient as partitioned
global address space (PGAS) using today’s network interfaces. It builds upon
TreadMark ’s [6] coherence protocol and crucially alters it to a floating home-
based protocol, based on the insight that diff-transfers across the network is
comparatively costly compared to RDMA intrinsics – which implies preference

4



towards local diff-merging. The home node then acts as the data supplier for
every shared page within the system.

Compared to PGAS frameworks (e.g., MPI), experimentation over a sub-
set of NAS Parallel Benchmarks shows that MENPS can obtain comparable
speedup in some of the computation tasks, while achieving much better produc-
tivity due to DSM’s support for transparent caching, etc. [12]. These results
back up their claim that DSM systems are at least as viable as traditional
PGAS/message-passing frameworks for scientific computing, also corroborated
by the resurgence of DSM studies later on[26].

2 PGAS and Message Passing

While the feasibility of transparent DSM systems over multiple machines on the
network has been made apparent since the 1980s, predominant approaches to
“scaling-out” programs over the network relies on the message-passing approach
[33]. The reasons are twofold:

1. Programmers would rather resort to more intricate, more predictable ap-
proaches to scaling-out programs over the network [33]. This implies
manual/controlled data sharding over nodes, separation of compute and
communication “stages” of computation, etc., which benefit performance
analysis and engineering.

2. Enterprise applications value throughput and uptime of relatively compu-
tationally inexpensive tasks/resources [14], which requires easy scalability
of tried-and-true, latency-inexpensive applications. Studies in transpar-
ent DSM systems mostly require exotic, specifically-written programs to
exploit global address space, which is fundamentally at odds in terms of
reusability and flexibility required.

2.1 PGAS

Partitioned Global Address Space (PGAS) is a parallel programming model that
(1) exposes a global address space to all machines within a network and (2) expli-
cates distinction between local and remote memory [11]. Oftentimes, message-
passing frameworks, for example OpenMPI, OpenFabrics, and UCX, are used as
backends to provide the PGAS model over various network interfaces/platforms
(e.g., Ethernet and Infiniband)[32, 29].

Notably, implementation of a global address space across machines on top
of machines already equipped with their own local address space (e.g., clus-
ter nodes running commercial Linux) necessitates a global addressing mecha-
nism for shared/shared data objects. DART[38], for example, utilizes a 128-bit
“global pointer” to encode global memory object/segment ID and access flags
in the upper 64 bits and virtual addresses in the lower 64 bits for each (slice
of) memory object allocated within the PGAS model. A non-collective PGAS
object is allocated entirely local to the allocating node’s memory, but registered
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globally. Consequently, a single global pointer is recorded in the runtime with
corresponding permission flags for the context of some user-defined group of
associated nodes. Comparatively, a collective PGAS object is allocated such
that a partition of the object (i.e., a sub-array of the repr) is stored in each of
the associated node – for a k-partitioned object, k global pointers are recorded
in the runtime each pointing to the same object, with different offsets and (nat-
urally) independently-chosen virtual addresses. Note that this design naturally
requires virtual addresses within each node to be pinned – the allocated object
cannot be re-addressed to a different virtual address i.e., the global pointer that
records the local virtual address cannot be auto-invalidated.

Similar schemes can be observed in other PGAS backends/runtimes, albeit
they may opt to use a map-like data structure for addressing instead. In general,
despite both PGAS and DSM systems provide memory management over remote
nodes, PGAS frameworks provide no transparent caching and transfer of remote
memory objects accessed by local nodes. The programmer is still expected to
handle data/thread movement manually when working with shared memory
over network to maximize their performance metrics of interest.

. . .
Improvement in NIC bandwidth and transfer rate benefits DSM applications

that expose global address space, and those that leverage single-writer capabili-
ties over hierarchical memory nodes. [GAS and PGAS (Partitioned GAS)
technologies for example Openshmem, OpenMPI, Cray Chapel, etc.
that leverage specially-linked memory sections and /dev/shm to ab-
stract away RDMA access].

Contemporary works on DSM systems focus more on leveraging hardware
advancements to provide fast and/or seamless software support. Adrias [26], for
example, implements a complex system for memory disaggregation over multiple
compute nodes connected via the ThymesisFlow -based RDMA fabric, where
they observed significant performance improvements over existing data-intensive
processing frameworks, for example APACHE Spark, Memcached, and Redis,
over no-disaggregation (i.e., using node-local memory only, similar to cluster
computing) systems.

2.2 Programming Model

2.3 Move Data to Process, or Move Process to Data?

(TBD – The former is costly for data-intensive computation, but the latter may
be impossible for certain tasks, and greatly hardens the replacement problem.)

3 Replacement Policy

In general, three variants of replacement strategies have been proposed for either
generic cache block replacement problems, or specific use-cases where contextual
factors can facilitate more efficient cache resource allocation:
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• General-Purpose Replacement Algorithms, for example LRU.

• Cost-Model Analysis

• Probabilistic and Learned Algorithms

3.1 General-Purpose Replacement Algorithms

Practically speaking, in the general case of the cache replacement problem, we
desire to predict the re-reference interval of a cache block [17]. This follows from
the Belady’s algorithm – the optimal case for the ideal replacement problem
occurs when, at eviction time, the entry with the highest re-reference interval is
replaced. Under this framework, therefore, the commonly-used LRU algorithm
could be seen as a heuristic where the re-reference interval for each entry is
predicted to be immediate. Fortunately, memory access traces of real computer
systems agree with this tendency due to spatial locality [source]. (Real systems
are complex, however, and there are other behaviors...) On the other hand, the
hypothetical LFU algorithm is a heuristic that captures frequency. [. . . ] While
the textbook LFU algorithm suffers from needing to maintain a priority-queue
for frequency analysis, it was nevertheless useful for keeping recurrent (though
non-recent) blocks from being evicted from the cache [source].

Derivatives from the LRU algorithm attempts to balance between frequency
and recency. [Talk about LRU-K, LRU-2Q, LRU-MQ, LIRS, ARC here
. . . ]

Advancements in parallel/concurrent systems had led to a rediscovery of
the benefits of using FIFO-derived replacement policies over their LRU/LFU
counterparts, as book-keeping operations on the uniform LRU/LFU state proves
to be (1) difficult for synchronization and, relatedly, (2) cache-unfriendly [36].
[Talk about FIFO, FIFO-CLOCK, FIFO-CAR, FIFO-QuickDemotion,
and Dueling CLOCK here . . . ]

Finally, real-life experiences have shown the need to reduce CPU time in
practical applications, owing from one simple observation – during the fetch-
execution cycle, all processors perform blocking I/O on the memory. A cache-
unfriendly design, despite its hypothetical optimality, could nevertheless degrade
the performance of a system during low-memory situations. In fact, this proves
to be the driving motivation behind Linux’s transition away from the old LRU-
2Q page replacement algorithm into the more coarse-grained Multi-generation
LRU algorithm, which has been mainlined since v6.1.

3.2 Cost-Model Analysis

The ideal case for the replacement problem fails to account for invalidation of
cache entries. It also assumes for a uniform, dual-hierarchical cache-store model
that is insufficient to capture the heterogeneity of today’s massively-parallel,
distributed systems. High-speed network interfaces are capable of exposing
RDMA interfaces between computer nodes, which amount to almost twice as
fast RDMA transfer when compared to swapping over the kernel I/O stack,
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while software that bypass the kernel I/O stack is capable of stretching the
bandwidth advantage even more (source). This creates an interesting network
topology between RDMA-enabled nodes, where, in addition to swapping at low-
memory situations, the node may opt to “swap” or simply drop the physical
page in order to lessen the cost of page misses.

[Talk about GreedyDual, GDSF, BCL, Amortization]
Traditionally, replacement policies based on cost-model analysis were utilized

in content-delivery networks, which had different consistency models compared
to finer-grained systems. HTTP servers need not pertain to strong consistency
models, as out-of-date information is considered permissible, and single-writer
scenarios are common. Consequently, most replacement policies for static con-
tent servers, while making strong distinction towards network topology, fails to
concern for the cases where an entry might become invalidated, let along multi-
writer protocols. One early paper [20] examines the efficacy of using page fault
frequency as an indicator of preference towards working set inclusion (which I
personally think is highly flawed – to be explained). Another paper [5] explores
the possibility of taking page fault into consideration for eviction, but fails to
go beyond the obvious implication that pages that have been faulted must be
evicted.

The concept of cost models for RDMA and NUMA systems are relatively
underdeveloped, too. (Expand)

3.3 Probabilistic and Learned Algorithms for Cache Re-
placement

Finally, machine learning techniques and low-cost probabilistic approaches have
been applied on the ideal cache replacement problem with some level of success.
[Talk about LeCaR, CACHEUS here].

4 Cache Coherence and Consistency in DSM
Systems

(I need to read more into this. Most of the contribution comes from CPU
caches, less so for DSM systems.) [Talk about JIAJIA and Treadmark’s
coherence protocol.]

Consistency and communication protocols naturally affect the cost for each
faulted memory access . . .

[Talk about directory, transactional, scope, and library cache co-
herence, which allow for multi-casted communications at page fault
but all with different levels of book-keeping.]
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