Progress Report: Page Cache Consistency Model

Zhengyi Chen

December 6, 2023



Literature Review: (Shan, Tsai, & Zhang. 2017!)

» Concerns with the sharing of persistent memory —
» More or less similar to sharing regular memory, but. ..
» Data replication is key = Multiple data provider.
» Supports both Multi-Writer Multi-Reader and Multi-Writer
Single-Writer Protocols
» MRMW *“support(s) great parallelism”
» MRSW enables “stronger consistency”
» Makes distinction between 3 variants of nodes:
» Commit Node — Node who wishes to commit changes wrt. the

system.
» Owner Node — Node(s) who act as data provider for latest

page content.
» Manager Node — Node who provide (serialized) write access

control to page.

Shan, Tsai, and Zhang, “Distributed shared persistent memory" .



Literature Review: (Shan, Tsai, & Zhang. 2017?)

» For data replication and fault tolerance, necessitates:
1. Commit status logging (akin to journaled file system)
2. Persistent Commit ID
3. Required deg. of replication — each ON shares to N nodes.

» Fault tolerance is out of this thesis's scope. However. ..

» Prob. no need for requiring any degree of data replication.

» Dropping data replication req. = no need for replication
comms.

» Commit status logging & persistent CID can be helpful &
should not introduce additional comms.

» MRSW provides “simpler and more efficient” commits than
MRMW — no concurrent commits to same shared memory
object exists.

» Also makes more sense from a CPU-accelerator dichotomy
outlook (ofc. wrt. this thesis's system).

2Shan, Tsai, and Zhang, “Distributed shared persistent memory”.



MRSW: (Shan, Tsai, & Zhang. 20173)

Node 1

Node 2

Node 3

Node 4

Figure 8: MRSW Example. Node 1 (CN) first acquires write permission
from Node 2 (MN) before writing data. It then commits the new data to ONs
at Node 2 and 3 with replication degree four and finally releases the write

acquire jupdate commit release
\ A
NJ‘, ’/ l, \N o
\ /r \ AT |
\ ) ‘V
\ 7 \ /!
7/ /

permission to MN.

Note: CN: Node 1, MN: Node 2, ON: Node 2 & 3. Node 4 may or

may not already share the committed page prior to acquire.

3Shan, Tsai, and Zhang, “Distributed shared persistent memory”.



Literature Review: (Ramesh. 2023)

» Popcorn-derived.
» Sequential consistency, MRSW protocol offloaded onto sNIC:
» DSM protocol processor implemented on sNIC FPGA core.
> sNIC keeps track of memory ownership, status, R/W
permissions at page level granularity.
» Removes the need for distinct memory management nodes.
» (i.e., the sNIC IS the memory management node — except of
course allocation).

» Similar idea occurred in Concordia*:

» Concurrency control and multicast offloaded to network switch.
» Authors claim this is more scalable (?)

*Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.

®Ramesh., “SNIC-DSM: SmartNIC based DSM Infrastructure for
Heterogeneous-ISA Machines”



Literature Review: (Endo, Sato, & Taura. 2020)°

> Eager Release Consistency.

» Prob. using MSI coherence protocol? Authors did not
mention it.

» MRMW: use timestamps to store reader “intervals”.

P Introduces the home-migration concept:
» At commit, make the CN the home node instead of
invalidating the home node.
» This removes communications needed for diff-merging at home
node — this can be done locally.
» No support for multiple home nodes.

» No performance improvement over PGAS programming
framework (OpenMPI).

5Endo, Sato, and Taura, “MENPS: A Decentralized Distributed Shared
Memory Exploiting RDMA".



Literature Review: (Endo, Sato, & Taura. 2020)’

init. & = 20, @ is on the cache block b, (home = ),
18, py = WiS(p, p) = rel_tsp = acq_tsp = 0 for all P
Sy, pyy < acq_tsp,
S5, pyy = 10 acq_tsp, =11 4 1S, pyy = 21
R(z)xo rel acq inv(z) R(z)z,

0
rel_tsp, =0
WiS(p,.P) 1= 11 rel_tsp, =11
W(x)xry 18, py) = 11
Py =

acq rel I'ts(h, )
acq_tsp =0 migrate
Py '

8¢5, pyy = 10 home

21

Fig. 5: Example of logical lease-based invalidation. The lease
value is set to 10. P; only sends the logical timestamp value
(rel_ts = 11) in the synchronization with Py, and then P,
invalidates = because the read timestamp (= 10) is smaller
than acq_ts.

"Endo, Sato, and Taura, “MENPS: A Decentralized Distributed Shared
Memory Exploiting RDMA".



The System

» Remote node(s) abstracted as shared memory device
“/dev/rshm"

» Heterogeneous Memory Management (HMM) ensures unified
address space between local and device memory.

» Migration of pages between CPU and “device” is transparent
to userspace — no need for copying/mapping.
» In reality, “/dev/rshm” a handler for RDMA access between
nodes.
» This involves remote read/write and moving page content
between nodes.
» Local node serves as home node & address space host at share
time.
> Remote nodes attached on /dev/rshm as accelerator.



The Problem: Consistency Protocol

» Single-Writer, Multiple-Reader Protocol

> Need to be performant...with some ergonomics
» Two Hypothetical Protocols:

> “RwLock” Consistency Protocol
» Acg-Rel Consistency Protocol

P Former ensures strong single-writer consistency
» — Also easier to program with!

P Latter allows concurrent in-memory non-committal
computation



“RwLock” Consistency Protocol

Similar to a read-write lock where:

>

>

Multiple readers can exist for a clean page — the page is
shared.

Only one writer is allowed for a clean page — the page
becomes exclusive.

For one writer node be allowed sole write access to some page,
all other readers need to have their page cache invalidated.
While the sole writer node has not yet committed, no other
reader or writer nodes are allowed to be served this page.
When the sole writer commits, it becomes the new home node
which serves the updated page content.

Invalidates reader must fetch from MN for read access, which
maintains RAW ordering.



“RwLock” Consistency Protocol

P1: Allocated X — PT Home; Access Ctrl.

P1F ¥ A A 4 = »
Reatl(x) X Inv(o, A )
hared K B
" / . ‘
P2 Write(x) % Excl. ; o »
%
Shared;
NewHome
P3 »

1. Read

2. Write-Invalidate

3. Post-Inv Read



Acg-Rel Consistency Protocol

In RwLock’s case, read requests result in installation of read-only
pages at remote nodes.
Alternatively, this protocol allows read/write pages to be installed
at remote nodes at read time. Such writes are non-committal and
cannot be synced with the entire system.
To summarize:
> “Readers” can write to its locally installed page without any
means to synchronize the change.
> “Writers” need to acquire global write access from the PT
node, which invalidates all shared pages.

> i.e., Instead of write-invalidate, perform acquire-invalidate.

This may require pages to be marked as CoW if the sharer wants
also to act as a home node.



Consistency Protocol: Knobs and Mods

We can modify these two protocols further as follows:

» Multi-home Protocol: instead of having one home at a time,
have multiple homes (e.g., when writer commits) to prevent
network bottleneck.

» Extra metadata can limit scalability (e.g., granularity of
directories)

» Auto-share: Automatically share pages at commit time using
1-way communications.

» Potential for communication reduction — debatable.

P> Request aggregation: Aggregate RDMA requests for optimal
RDMA transfer performance.

» Need to be coherent with program sequence!



Why this design?

» Largely inspired by DSPMS.
» Removed arrows for enforced data duplication — duplication is
solely on-demand.

» |Introduces transitional state “T":

» Used to flag a page as unserviceable — visible only at MN.

> All read /write access to T-page is kept on hold until MN
receives commit msg.

> After commit, MN forwards queued R/W access to moved
home.

» This (at least) maintains RAW, WAW data dependency for
whichever interleaving issues.

» Removing T allows stale data to be served — violates RAW for
better throughput.

» Extensible (as mentioned in prior page).

8Shan, Tsai, and Zhang, “Distributed shared persistent memory”.



Why not this design?

At the very least. ..

» De-coupled home and access-management nodes require:

» Each home node need to be MN-aware (easy).
»> MN need to be home-aware (also easy with single-writer, but
spatial complexity is a concern):

>
>

>
>

Naive directory scheme is not scalable.

Coarse directory scheme (e.g., SGI Origin 2000) is wasteful
(but may be the fastest in practice).

Distributed directory scheme may provide terrible latency.
More sophisticated schemes are possible but needs work &
experimentation.

» Strict consistency limits throughput.



What about Consistency Model?

» The weaker a consistency model is, the more difficult it is to
program with.
» Weak ordering architectures (e.g., ARMv8) more or less
depends on compiler /interpreter to emit barriers as see fit°.
» Bad for usability/portability — programs may need to be
compiled using a modified toolchain, else need to add these
synchronization instructions/function calls everywhere.

» 10 yses Partial Store Order.

» Preserves RAR, WAR — “synchronous read. .. asynchronous
write”
> Easier to use than relaxed ordering.

» 11 uses strong consistency, but warns about its scalability.

®Haynes, Sequential consistency in armv8.

©Cai et al., “Efficient distributed memory management with RDMA and
caching”.

"\Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.



Consistency Model: Cont.

» Similar to Concordial?, the proposed protocols also assume
strong consistency.

» Further work needed to see how to adapt these protocols for
weaker consistency models.
» Low-hanging fruit: TSO
» Allowing read requests to be served for T-pages @ MN: W—R
violation.
> Allowing read requests to be served via non-MN homes: also
W—R violation (exploits a race condition between write msg
and invalidation msg).
» Request workers work on one request at a time: no R—-W
violation.
» W—W violation simply cannot happen — they always serialize
@ MN.

2\Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.



Summary

» Based on MSI coherence protocol, with possible T-state
extension.
» T-state can be instead implemented as an additional flag
parallel to MSI FSM.
> T-pages cannot be serviced by MN — all read/write requests
blocked.

» One consistency model (for now): sequential consistency.

» Maintains RAW via T-state @ MN — removing blocking on
T-pages results in TSO.

» Maintains WAR via sequentially worked RDMA RQ.

» Maintains WAW via single-writer.

> Two consistency protocols:

» Rwlock consistency protocol only allows read-only sharing.
» Acq-Rel consistency protocol differentiates non-committal
writes, allows proc-local writable sharing.



