
Cache Coherency in ARMv8-A for
Cross-Architectural DSM Systems

Zhengyi Chen
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2024



Abstract
[TODO] . . .

i



Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Zhengyi Chen)

ii



Acknowledgements
[TODO]:

For unbounded peace and happiness among all peoples of the world.

May we, one day, be able to see each other as equals.

iii



Contents

1 Introduction 1

2 Background 2
2.1 Experiences from Software DSM . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Munin: Multi-Consistency Protocol . . . . . . . . . . . . . . 3
2.1.2 Treadmarks: Multi-Writer Protocol . . . . . . . . . . . . . . 4
2.1.3 Hotpot: Single-Writer & Data Replication . . . . . . . . . . . 5
2.1.4 MENPS: A Return to DSM . . . . . . . . . . . . . . . . . . 5

2.2 Alternatives to DSM . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 PGAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Consistency Model and Cache Coherence . . . . . . . . . . . . . . . 8
2.3.1 Consistency Model in DSM . . . . . . . . . . . . . . . . . . 8
2.3.2 Coherence Protocol . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 DMA and Cache Coherence . . . . . . . . . . . . . . . . . . 10
2.3.4 Cache Coherence in ARMv8-A . . . . . . . . . . . . . . . . 11
2.3.5 ARMv8-A Software Cache Coherence in Linux Kernel . . . . 12

3 Software Coherency Latency 17
3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 QEMU-over-x86: star . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Ampere Altra: rose . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Exporting dcache_clean_poc . . . . . . . . . . . . . . . . . 19
3.2.2 Kernel Module: my_shmem . . . . . . . . . . . . . . . . . . . 19
3.2.3 Instrumentation: ftrace and bcc-tools . . . . . . . . . . . 28
3.2.4 Userspace Programs . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Controlled Allocation Size; Variable Allocation Count . . . . 28
3.3.2 Controlled Allocation Count; Variable Allocation Size . . . . 29

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Hugepages and RDMA-based DSM . . . . . . . . . . . . . . 30
3.4.2 Access Latency Post-PoC . . . . . . . . . . . . . . . . . . . 31
3.4.3 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Conclusion 37

iv



4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 38

A Terminologies 43

B More on The Linux Kernel 44
B.1 Processor Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.2 enum dma_data_direction . . . . . . . . . . . . . . . . . . . . . . 44
B.3 Use case for dcache_clean_poc: smbdirect . . . . . . . . . . . . . . 44

C Cut & Extra Work 45
C.1 Replacement Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.2 Coherency Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.3 Listing: Userspace . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.4 Why did you do *? . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



Chapter 1

Introduction

. . .

This thesis paper builds upon an ongoing research effort in implementing a tightly
coupled cluster where HMM abstractions allow for transparent RDMA access from
accelerator nodes to local data and migration of data near computation, leveraging
different consistency model and coherency protocols to amortize the communication
cost for shared data. More specifically, this thesis explores the following:

• The effect of cache coherency maintenance, specifically OS-initiated, on RDMA
programs.

• Discussion of memory models and coherence protocol designs for a single-writer,
multi-reader RDMA-based DSM system.
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Chapter 2

Background

Though large-scale cluster systems remain the dominant solution for request and data-
level parallelism [27], there have been a resurgence towards applying HPC techniques
(e.g., DSM) for more efficient heterogeneous computation with tighter-coupled het-
erogeneous nodes providing (hardware) acceleration for one another [10, 48, 36].
Orthogonally, within the scope of one motherboard, heterogeneous memory manage-
ment (HMM) enables the use of OS-controlled, unified memory view across both main
memory and device memory [26], all while using the same libc function calls as one
would with SMP programming, the underlying complexities of memory ownership
and data placement automatically managed by the OS kernel. However, while HMM
promises a distributed shared memory approach towards exposing CPU and peripheral
memory, applications (drivers and front-ends) that exploit HMM to provide ergonomic
programming models remain fragmented and narrowly-focused. Existing efforts in
exploiting HMM in Linux predominantly focus on exposing global address space ab-
straction to GPU memory – a largely non-coordinated effort surrounding both in-tree
and proprietary code [16, 2]. Limited effort have been done on incorporating HMM
into other variants of accelerators in various system topologies.

Orthogonally, allocation of hardware accelerator resources in a cluster computing
environment becomes difficult when the required hardware accelerator resources of
one workload cannot be easily determined and/or isolated as a “stage” of computation.
Within a cluster system there may exist a large amount of general-purpose worker nodes
and limited amount of hardware-accelerated nodes. Further, it is possible that every
workload performed on this cluster asks for hardware acceleration from time to time, but
never for a relatively long time. Many job scheduling mechanisms within a cluster move
data near computation by migrating the entire job/container between general-purpose
and accelerator nodes [60, 54]. This way of migration naturally incurs large overhead
– accelerator nodes which strictly perform computation on data in memory without
ever needing to touch the container’s filesystem should not have to install the entire
filesystem locally, for starters. Moreover, must all computations be performed near
data? Adrias[50], for example, shows that RDMA over fast network interfaces (25 Gbps
× 8), when compared to node-local setups, result in negligible impact on tail latencies
but high impact on throughput when bandwidth is maximized.

2



Chapter 2. Background 3

The rest of the chapter is structured as follows:

• We identify and discuss notable developments in software-implemented DSM
systems, and thus identify key features of contemporary advancements in DSM
techniques that differentiate them from their predecessors.

• We identify alternative (shared memory) programming paradigms and compare
them with DSM, which sought to provide transparent shared address space among
participating nodes.

• We give an overview of coherency protocol and consistency models for multi-
sharer DSM systems.

• We provide a primer to cache coherency in ARM64 systems, which do not
guarantee cache-coherent DMA, as opposed to x86 systems [67].

2.1 Experiences from Software DSM

A majority of contributions to software DSM systems come from the 1990s [6, 12, 33,
30]. These developments follow from the success of the Stanford DASH project in the
late 1980s – a hardware distributed shared memory (specifically NUMA) implemen-
tation of a multiprocessor that first proposed the directory-based protocol for cache
coherence, which stores the ownership information of cache lines to reduce unnecessary
communication that prevented previous multiprocessors from scaling out [40].

While developments in hardware DSM materialized into a universal approach to cache-
coherence in contemporary many-core processors (e.g., Ampere Altra[3]), software
DSMs in clustered computing languished in favor of loosely-coupled nodes performing
data-parallel computation, communicating via message-passing. Bandwidth limitations
with the network interfaces of the late 1990s was insufficient to support the high traffic
incurred by DSM and its programming model [69, 46].

New developments in network interfaces provides much improved bandwidth and
latency compared to ethernet in the 1990s. RDMA-capable NICs have been shown
to improve the training efficiency sixfold compared to distributed TensorFlow via
RPC, scaling positively over non-distributed training [34]. Similar results have been
observed for APACHE Spark [47] and SMBDirect [41]. Consequently, there have been
a resurgence of interest in software DSM systems and programming models [53, 11].

2.1.1 Munin: Multi-Consistency Protocol

Munin[12] is one of the older developments in software DSM systems. The authors
of Munin identify that false-sharing, occurring due to multiple processors writing to
different offsets of the same page triggering invalidations, is strongly detrimental to the
performance of shared-memory systems. To combat this, Munin exposes annotations
as part of its programming model to facilitate multiple consistency protocols on top of
release consistency. An immutable shared memory object across readers, for example,
can be safely copied without concern for coherence between processors. On the other
hand, the write-shared annotation explicates that a memory object is written by multiple
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processors without synchronization – i.e., the programmer guarantees that only false-
sharing occurs within this granularity. Annotations such as these explicitly disables
subsets of consistency procedures to reduce communication in the network fabric,
thereby improving the performance of the DSM system.

Perhaps most importantly, experiences from Munin show that restricting the flexibility
of programming model can lead to more performant coherence models, as exhibited
by the now-foundational Resilient Distributed Database paper [72] which powered
many now-popular scalable data processing frameworks such as Hadoop MapReduce
[4] and APACHE Spark [5]. “To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory [based on]. . . transformations rather than. . . updates to
shared state” [72]. This allows for the use of transformation logs to cheaply synchronize
states between unshared address spaces – a much desired property for highly scalable,
loosely-coupled clustered systems.

2.1.2 Treadmarks: Multi-Writer Protocol

Treadmarks[6] is a software DSM system developed in 1996, which featured an intricate
interval-based multi-writer protocol that allows multiple nodes to write to the same page
without false-sharing. The system follows a release-consistent memory model, which
requires the use of either locks (via acquire , release) or barriers (via barrier) to
synchronize. Each interval represents a time period in-between page creation, release
to another processor, or a barrier; they also each correspond to a write notice, which
are used for page invalidation. Each acquire message is sent to the statically-assigned
lock-manager node, which forwards the message to the last releaser. The last releaser
computes the outstanding write notices and piggy-backs them back for the acquirer
to invalidate its own cached page entry, thus signifying entry into the critical section.
Consistency information, including write notices, intervals, and page diffs, are routinely
garbage-collected which forces cached pages in each node to become validated.

Compared to Treadmarks, the system described in this paper uses a single-writer
protocol, thus eliminating the concept of “intervals” – with regards to synchronization,
each page can be either in-sync (in which case they can be safely shared) or out-of-
sync (in which case they must be invalidated/updated). This comes with the following
advantage:

• Less metadata for consistency-keeping.

• More adherent to the CPU-accelerator dichotomy model.

• Much simpler coherence protocol, which reduces communication cost.

In view of the (still) disparate throughput and latency differences between local and
remote memory access [11], the simpler coherence protocol of single-writer protocol
should provide better performance on the critical paths of remote memory access.
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2.1.3 Hotpot: Single-Writer & Data Replication

Newer works such as Hotpot[63] apply distributed shared memory techniques on
persistent memory to provide “transparent memory accesses, data persistence, data
reliability, and high availability”. Leveraging on persistent memory devices allow
DSM applications to bypass checkpoints to block device storage [63], ensuring both
distributed cache coherence and data reliability at the same time [63].

We specifically discuss the single-writer portion of its coherence protocol. The data
reliability guarantees proposed by the Hotpot system requires each shared page to be
replicated to some degree of replication. Nodes who always store latest replication of
shared pages are referred to as “owner nodes”, which arbitrate other nodes to store more
replications in order to reach the degree of replication quota. At acquisition time, the
acquiring node asks the access-management node for single-writer access to shared
page, who grants it if no other critical section exists, alongside list of current owner
nodes. At release time, the releaser first commits its changes to all owner nodes which,
in turn, commits its received changes across lesser sharers to achieve the required degree
of replication. These two operations are all acknowledged back in reverse order. Once
all acknowledgements are received from owner nodes by commit node, the releaser
tells them to delete their commit logs and, finally, tells the manager node to exit critical
section.

The required degree of replication and logged commit transaction until explicit deletion
facilitate crash recovery at the expense of worse performance over release-time I/O.
While the study of crash recovery with respect to shared memory systems is out of
the scope of this thesis, this paper provides a good framework for a correct coherence
protocol for a single-writer, multiple-reader shared memory system, particularly when
the protocol needs to cater for a great variety of nodes each with their own memory
preferences (e.g., write-update vs. write-invalidate, prefetching, etc.).

2.1.4 MENPS: A Return to DSM

MENPS[22] leverages new RDMA-capable interconnects as a proof-of-concept that
DSM systems and programming models can be as efficient as partitioned global ad-
dress space (PGAS) using today’s network interfaces. It builds upon TreadMark’s [6]
coherence protocol and crucially alters it to a floating home-based protocol, based on
the insight that diff-transfers across the network is comparatively costly compared to
RDMA intrinsics – which implies preference towards local diff-merging. The home
node then acts as the data supplier for every shared page within the system.

Compared to PGAS frameworks (e.g., MPI), experimentation over a subset of NAS
Parallel Benchmarks shows that MENPS can obtain comparable speedup in some of
the computation tasks, while achieving much better productivity due to DSM’s support
for transparent caching, etc. [22]. These results back up their claim that DSM systems
are at least as viable as traditional PGAS/message-passing frameworks for scientific
computing, also corroborated by the resurgence of DSM studies later on[50].
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2.2 Alternatives to DSM

While the feasibility of transparent DSM systems over multiple machines on the network
has been made apparent since the 1980s, predominant approaches to “scaling-out”
programs over the network relies on the message-passing approach [66]. The reasons
are twofold:

1. Programmers would rather resort to more intricate, more predictable approaches
to scaling-out programs over the network [66]. This implies manual/controlled
data sharding over nodes, separation of compute and communication “stages” of
computation, etc., which benefit performance analysis and engineering.

2. Enterprise applications value throughput and uptime of relatively computationally
inexpensive tasks/resources [27], which requires easy scalability of tried-and-true,
latency-inexpensive applications. Studies in transparent DSM systems mostly
require exotic, specifically-written programs to exploit global address space,
which is fundamentally at odds in terms of reusability and flexibility required.

2.2.1 PGAS

Partitioned Global Address Space (PGAS) is a parallel programming model that (1)
exposes a global address space to all machines within a network and (2) explicates
distinction between local and remote memory [19]. Oftentimes, message-passing
frameworks, for example OpenMPI, OpenFabrics, and UCX, are used as backends to
provide the PGAS model over various network interfaces/platforms (e.g., Ethernet and
Infiniband)[65, 58].

Notably, implementation of a global address space across machines on top of ma-
chines already equipped with their own local address space (e.g., cluster nodes running
commercial Linux) necessitates a global addressing mechanism for shared/shared data
objects. DART[74], for example, utilizes a 128-bit “global pointer” to encode global
memory object/segment ID and access flags in the upper 64 bits and virtual addresses in
the lower 64 bits for each (slice of) memory object allocated within the PGAS model. A
non-collective PGAS object is allocated entirely local to the allocating node’s memory,
but registered globally. Consequently, a single global pointer is recorded in the runtime
with corresponding permission flags for the context of some user-defined group of
associated nodes. Comparatively, a collective PGAS object is allocated such that a
partition of the object (i.e., a sub-array of the repr) is stored in each of the associated
node – for a k-partitioned object, k global pointers are recorded in the runtime each
pointing to the same object, with different offsets and (intuitively) independently-chosen
virtual addresses. Note that this design naturally requires virtual addresses within each
node to be pinned – the allocated object cannot be re-addressed to a different virtual
address, thus preventing the global pointer that records the local virtual address from
becoming spontaneously invalidated.

Similar schemes can be observed in other PGAS backends/runtimes, albeit they may opt
to use a map-like data structure for addressing instead. In general, despite both PGAS
and DSM systems provide memory management over remote nodes, PGAS frameworks
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provide no transparent caching and transfer of remote memory objects accessed by local
nodes. The programmer is still expected to handle data/thread movement manually
when working with shared memory over network to maximize their performance metrics
of interest.

2.2.2 Message Passing

Message Passing remains the predominant programming model for parallelism between
loosely-coupled nodes within a computer system, much as it is ubiquitous in supporting
all levels of abstraction within any concurrent components of a computer system. Spe-
cific to cluster computing systems is the message-passing programming model, where
parallel programs (or instances of the same parallel program) on different nodes within
the system communicate via exchanging messages over network between these nodes.
Such models exchange programming model productivity for more fine-grained control
over the messages passed, as well as more explicit separation between communication
and computation stages within a programming subproblem.

Commonly, message-passing backends function as middlewares – communication run-
times – to aid distributed software development [66]. Such a message-passing backend
expose facilities for inter-application communication to frontend developers while trans-
parently providing security, accounting, and fault-tolerance, much like how an operating
system may provide resource management, scheduling, and security to traditional ap-
plications [66]. This is the case for implementing the PGAS programming model,
which mostly rely on common message-passing backends to facilitate orchestrated data
manipulation across distributed nodes. Likewise, message-passing backends, including
RDMA API, form the backbone of many research-oriented DSM systems [22, 29, 11,
35].

Message-passing between network-connected nodes may be two-sided or one-sided.
The former models an intuitive workflow to sending and receiving datagrams over the
network – the sender initiates a transfer; the receiver copies a received packet from the
network card into a kernel buffer; the receiver’s kernel filters the packet and (optionally)
[59] copies the internal message into the message-passing runtime/middleware’s address
space; the receiver’s middleware inspects the copied message and performs some
procedures accordingly, likely also involving copying slices of message data to some
registered distributed shared memory buffer for the distributed application to access.
Despite it being a highly intuitive model of data manipulation over the network, this
poses a fundamental performance issue: because the process requires the receiver’s
kernel AND userspace to exert CPU-time, upon reception of each message, the receiver
node needs to proactively exert CPU-time to move the received data from bytes read
from NIC devices to userspace. Because this happens concurrently with other kernel and
userspace routines in a concurrent system, a preemptable kernel may incur significant
latency if the kernel routine for packet filtering is pre-empted by another kernel routine,
userspace, or IRQs.

Comparatively, a “one-sided” message-passing scheme, for example RDMA, allows the
network interface card to bypass in-kernel packet filters and perform DMA on registered
memory regions. The NIC can hence notify the CPU via interrupts, thus allowing the
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kernel and the userspace programs to perform callbacks at reception time with reduced
latency. Because of this advantage, many recent studies attempt to leverage RDMA
APIs for improved distributed data workloads and creating DSM middlewares [47, 34,
22, 29, 11, 35].

2.3 Consistency Model and Cache Coherence

Consistency model specifies a contract on allowed behaviors of multi-processing pro-
grams with regards to a shared memory [52]. One obvious conflict, which consistency
models aim to resolve, lies within the interaction between processor-native programs
and multi-processors, all of whom needs to operate on a shared memory with hetero-
geneous cache topologies. Here, a well-defined consistency model aims to resolve the
conflict on an architectural scope. Beyond consistency models for bare-metal systems,
programming languages [9, 8, 49, 55] and paradigms [6, 29, 11] define consistency
models for parallel access to shared memory on top of program order guarantees to ex-
plicate program behavior under shared memory parallel programming across underlying
implementations.

Related to the definition of a consistency model is the coherence problem, which arises
whenever multiple actors have access to multiple copies of some datum, which needs
to be synchronized across multiple actors with regards to write-accesses [52]. While
less relevant to programming language design, coherence must be maintained via a
coherence protocol [52] in systems of both microarchitectural and network scales. For
DSM systems, the design of a correct and performant coherence protocol is of especially
high priority and is a major part of many studies in DSM systems throughout history
[12, 6, 57, 22, 18].

2.3.1 Consistency Model in DSM

Distributed shared memory systems with node-local caching naturally implies the exis-
tence of the consistency problem with regards to contending read/write accesses. Indeed,
a significant subset of DSM studies explicitly characterize themselves as adhering to
one of the well-known consistency models to better understand system behavior and to
provide optimizations in coherence protocols [6, 30, 12, 22, 68, 11, 37], each adhering
to a different consistency model to balance between communication costs and ease of
programming.

In particular, we note that DSM studies tend to conform to either release consistency
[6, 22, 12] or weaker [30], or sequential consistency [13, 68, 37, 20], with few works
[11] pertaining to moderately constrained consistency models in-between. While older
works, as well as works which center performance of their proposed DSM systems over
existing approaches [22, 11], favor release consistency due to its performance benefits
(e.g., in terms of coherence costs [22]), newer works tend to adopt stricter consistency
models, sometimes due to improved productivity offered to programmers [37].

We especially note the role of balancing productivity and performance in terms of
selecting the ideal consistency model for a system. It is common knowledge that weaker
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Sequential TSO PSO Release Acquire Scope
Home; Invalidate [37, 20, 73] [63, 22] [28] [30]
Home; Update
Float; Invalidate [22]
Float; Update
Directory; Inval. [68]
Directory; Update
Dist. Dir.; Inval. [13] [11] [12] [12, 6]
Dist. Dir.; Update [12]

Table 2.1: Coherence Protocol vs. Consistency Model in Selected Disaggregated
Memory Studies. “Float” short for “floating home”. Studies selected for clearly described

consistency model and coherence protocol.

consistency models are harder to program with, at the benefit of less (implied) coherence
communications resulting in better throughput overall – provided that the programmer
could guarantee correctness, a weaker consistency model allows for less invalidation
of node-local cache entries, thereby allowing multiple nodes to compute in parallel
on (likely) outdated local copy of data such that the result of the computation remains
semantically correct with regards to the program. This point was made explicit in Munin
[12], where (to reiterate) it introduces the concept of consistency “protocol parameters”
to annotate shared memory access pattern, in order to reduce the amount of coherence
communications necessary between nodes computing in distributed shared memory.
For example, a DSM object (memory object accounted for by the DSM system) can
be annotated with “delayed operations” to delay coherence operations beyond any
write-access, or shared without “write” annotation to disable write-access over shared
nodes, thereby disabling all coherence operations with regards to this DSM object.
Via programmer annotation of DSM objects, the Munin DSM system explicates the
effect of weaker consistency in relation to the amount of synchronization overhead
necessary among shared memory nodes. To our knowledge, no other more recent DSM
works have explored this interaction between consistency and coherence costs on DSM
objects, though relatedly Resilient Distributed Dataset (RDD) [72] also highlights its
performance and flexibility benefits in opting for an immutable data representation over
disaggregated memory over network when compared to contemporary DSM approaches.

2.3.2 Coherence Protocol

Coherence protocols hence becomes the means over which DSM systems implement
their consistency model guarantees. As table 2.1 shows, DSM studies tends to im-
plement write-invalidated coherence under a home-based or directory-based protocol
framework, while a subset of DSM studies sought to reduce communication overheads
and/or improve data persistence by offering write-update protocol extensions [12, 63].



Chapter 2. Background 10

2.3.2.1 Home-Based Protocols

Home-based protocols define each shared memory object with a corresponding “home”
node, under the assumption that a many-node network would distribute home-node
ownership of shared memory objects across all hosts [30]. On top of home-node
ownership, each mutable shared memory object may be additionally cached by other
nodes within the network, creating the coherence problem. To our knowledge, in
addition to table 2.1, this protocol and its derivatives had been adopted by [23, 42, 30,
53, 63, 22].

We identify that home-based protocols are conceptually straightforward compared to
directory-based protocols, centering communications over storage of global metadata
(in this case ownership of each shared memory object). This leads to greater flexibility
in implementing coherence protocols. A shared memory object at its creation may
be made known globally via broadcast, or made known to only a subset of nodes (0
or more) via multicast. Likewise, metadata storage could be cached locally to each
node and invalidated alongside object invalidation or fetched from a fixed node with
respect to one object. This implementation flexibility is further taken advantage of
in Hotpot[63], which refines the “home node” concept into owner node to provide
replication and persistence, in addition to adopting a dynamic home protocol similar to
that of [22].

2.3.2.2 Directory-Based Protocols

Directory-based protocols instead take a shared database approach by denoting each
shared memory object with a globally shared entry describing ownership and sharing
status. In its non-distributed form (e.g., [68]), a global, central directory is maintained
for all nodes in network for ownership information: the directory hence becomes
a bottleneck for imposing latency and bandwidth constraints on parallel processing
systems. Comparatively, a distributed directory scheme may delegate responsibilities
across all nodes in network mostly in accordance to sharded address space [29, 11].
Though theoretically sound, this scheme performs no dynamic load-balancing for
commonly shared memory objects, which in the worst case would function exactly like
a non-distributed directory coherence scheme. To our knowledge, in addition to table
2.1, this protocol and its derivatives had been adopted by [12, 6, 62, 21, 29].

2.3.3 DMA and Cache Coherence

The advent of high-speed RDMA-capable network interfaces introduce introduce op-
portunities for designing more performant DSM systems over RDMA (as established
in 2.2.2). Orthogonally, RDMA-capable NICs on a fundamental level perform direct
memory access over the main memory to achieve one-sided RDMA operations to re-
duce the effect of OS jittering on RDMA latencies. For modern computer systems with
cached multiprocessors, this poses a potential cache coherence problem on a local level
– because RDMA operations happen concurrently with regards to memory accesses
by CPUs, which stores copies of memory data in cache lines which may [39, 67] or
may not [25, 15] be fully coherent by the DMA mechanism, any DMA operations
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performed by the RDMA NIC may be incoherent with the cached copy of the same data
inside the CPU caches (as is the case for accelerators, etc.). This issue is of particular
concern to the kernel development community, who needs to ensure that the behaviors
of DMA operations remain identical across architectures regardless of support of cache-
coherent DMA [15]. Likewise existing RDMA implementations which make heavy
use of architecture-specific DMA memory allocation implementations, implementing
RDMA-based DSM systems in kernel also requires careful use of kernel API functions
that ensure cache coherency as necessary.

2.3.4 Cache Coherence in ARMv8-A

We specifically focus on the implementation of cache coherence in ARMv8-A. Unlike
x86 which guarantees cache-coherent DMA [67, 15], the ARMv8-A architecture (and
many other popular ISAs, for example RISC-V) does not guarantee cache-coherency of
DMA operations across vendor implementations. ARMv8 defines a hierarchical model
for coherency organization to support heterogeneous and asymmetric multi-processing
systems [7].

Definition 1 (cluster). A cluster defines a minimal cache-coherent region for Cortex-
A53 and Cortex-A57 processors. Each cluster usually comprises of 1 or more core as
well as a shared last-level cache.

Definition 2 (sharable domain). A sharable domain defines a vendor-defined cache-
coherent region. Sharable domains can be inner or outer, which limits the scope of
broadcast coherence messages to point-of-unification and point-of-coherence, respec-
tively.

Usually, the inner sharable domain defines the domain of all (closely-coupled) proces-
sors inside a heterogeneous multiprocessing system (see 5); while the outer sharable
domain defines the largest memory-sharing domain for the system (e.g. inclusive of
DMA bus).

Definition 3 (Point-of-Unification). The point-of-unification (PoU) under ARMv8
defines a level of coherency such that all sharers inside the inner sharable domain see
the same copy of data.

Consequently, PoU defines a point at which every core of a ARMv8-A processor
sees the same (i.e., a unified) copy of a memory location regardless of accessing via
instruction caches, data caches, or TLB.

Definition 4 (Point-of-Coherence). The point-of-coherence (PoC) under ARMv8 de-
fines a level of coherency such that all sharers inside the outer sharable domain see the
same copy of data.

Consequently, PoC defines a point at which all observers (e.g., cores, DSPs, DMA
engines) to memory will observe the same copy of a memory location.
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2.3.4.1 Addendum: Heterogeneous & Asymmetric Multiprocessing

Using these definitions, a vendor could build heterogeneous and asymmetric multi-
processing systems as follows:

Definition 5 (Heterogeneous Multiprocessing). A heterogeneous multiprocessing sys-
tem incorporates ARMv8 processors of diverse microarchitectures that are fully coherent
with one another, running the same system image.

Definition 6 (Asymmetric Multiprocessing). A asymmetric multiprocessing system
needs not contain fully coherent processors. For example, a system-on-a-chip may
contain a non-coherent co-processor for secure computing purposes [7].

2.3.5 ARMv8-A Software Cache Coherence in Linux Kernel

Because of the lack of hardware guarantee on hardware DMA coherency (though such
support exists [56]), programmers need to invoke architecture-specific cache-coherency
instructions when porting DMA hardware support over a diverse range of ARMv8
microarchitectures, often encapsulated in problem-specific subroutines.

Notably, kernel (driver) programming warrants programmer attention to software-
maintained coherency when userspace programmers downstream expect data-flow,
interspersed between CPU and DMA operations, to follow program ordering and (driver
vendor) specifications. One such example arises in the Linux kernel implementation of
DMA memory management API [51]1:

Definition 7 (DMA Mappings). The Linux kernel DMA memory allocation API,
imported via

1 #include <linux/dma-mapping.h>

defines two variants of DMA mappings:

• Consistent DMA mappings:

They are guaranteed to be coherent in-between concurrent CPU/DMA accesses
without explicit software flushing. 2

• Streaming DMA mappings:

They provide no guarantee to coherency in-between concurrent CPU/DMA ac-
cesses. Programmers need to manually apply coherency maintenance subroutines
for synchronization.

Consistent DMA mappings could be trivially created via allocating non-cacheable
memory, which guarantees PoC for all memory observers (though system-specific
fastpaths exist).

1Based on Linux kernel v6.7.0.
2However, it does not preclude CPU store reordering, so memory barriers remain necessary in a

multiprocessing context.
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On the other hand, streaming DMA mappings require manual synchronization upon
programmed CPU/DMA access. Take single-buffer synchronization on CPU after DMA
access for example:

1 /* In kernel/dma/mapping.c */
2 void dma_sync_single_for_cpu(
3 struct device *dev, // kernel repr for DMA device
4 dma_addr_t addr, // DMA address
5 size_t size, // Synchronization buffer size
6 enum dma_data_direction dir, // Data-flow direction
7 ) {
8 /* Translate DMA address to physical address */
9 phys_addr_t paddr = dma_to_phys(dev, addr);

10

11 if (!dev_is_dma_coherent(dev)) {
12 arch_sync_dma_for_cpu(paddr, size, dir);
13 arch_sync_dma_for_cpu_all(); // MIPS quirks, nop for ARM64
14 }
15

16 /* Miscellaneous cases...*/
17 }

1 /* In arch/arm64/mm/dma-mapping.c */
2 void arch_sync_dma_for_cpu(
3 phys_addr_t paddr,
4 size_t size,
5 enum dma_data_direction dir,
6 ) {
7 /* Translate physical address to (kernel) virtual address */
8 unsigned long start = (unsigned long)phys_to_virt(paddr);
9

10 /* Early exit for DMA read: no action needed for CPU */
11 if (dir == DMA_TO_DEVICE)
12 return;
13

14 /* ARM64-specific: invalidate CPU cache to PoC */
15 dcache_inval_poc(start, start + size);
16 }

This call-chain, as well as its mirror case which maintains cache coherency for the
DMA device after CPU access:

dma_sync_single_for_device(struct device *, dma_addr_t, size_t,
enum dma_data_direction)↪→

, call into the following procedures, respectively:
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1 /* Exported @ arch/arm64/include/asm/cacheflush.h */
2 /* Defined @ arch/arm64/mm/cache.S */
3 /* All functions accept virtual start, end addresses. */
4

5 /* Invalidate data cache region [start, end) to PoC.
6 *
7 * Invalidate CPU cache entries that intersect with [start, end),
8 * such that data from external writers becomes visible to CPU.
9 */

10 extern void dcache_inval_poc(
11 unsigned long start, unsigned long end
12 );
13

14 /* Clean data cache region [start, end) to PoC.
15 *
16 * Write-back CPU cache entries that intersect with [start, end),
17 * such that data from CPU becomes visible to external writers.
18 */
19 extern void dcache_clean_poc(
20 unsigned long start, unsigned long end
21 );

2.3.5.1 Addendum: enum dma_data_direction

The Linux kernel defines 4 direction enum values for fine-tuning synchronization behav-
iors:

1 /* In include/linux/dma-direction.h */
2 enum dma_data_direction {
3 DMA_BIDIRECTION = 0, // data transfer direction uncertain.
4 DMA_TO_DEVICE = 1, // data from main memory to device.
5 DMA_FROM_DEVICE = 2, // data from device to main memory.
6 DMA_NONE = 3, // invalid repr for runtime errors.
7 };

These values allow for certain fast-paths to be taken at runtime. For example, DMA_TO_DEVICE
implies that the device reads data from memory without modification, and hence pre-
cludes software coherence instructions from being run when synchronizing for CPU
after DMA operation.

2.3.5.2 Use-case: Kernel-space SMBDirect Driver

An example of cache-coherent in-kernel RDMA networking module over heterogeneous
ISAs could be found in the Linux implementation of SMBDirect. SMBDirect is an
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extension of the SMB (Server Message Block) protocol for opportunistically establishing
the communication protocol over RDMA-capable network interfaces [70].

We focus on two procedures inside the in-kernel SMBDirect implementation:

Before send: smbd_post_send smbd_post_send is a function downstream of
the call-chain of smbd_send , which sends SMBDirect payload for transport over net-
work. Payloads are constructed and batched for maximized bandwidth, then smbd_post_send
is called to signal the RDMA NIC for transport.

The function body is roughly as follows:

1 /* In fs/smb/client/smbdirect.c */
2 static int smbd_post_send(
3 struct smbd_connection *info, // SMBDirect transport context
4 struct smbd_request *request, // SMBDirect request context
5 ) {
6 struct ib_send_wr send_wr; // Ib "Write Request" for payload
7 int rc, i;
8

9 /* For each message in batched payload */
10 for (i = 0; i < request->num_sge; i++) {
11 /* Log to kmesg ring buffer... */
12

13 /* RDMA wrapper over DMA API1 */
14 ib_dma_sync_single_for_device(
15 info->id->device, // struct ib_device *
16 request->sge[i].addr, // u64 (as dma_addr_t)
17 request->sge[i].length, // size_t
18 DMA_TO_DEVICE, // enum dma_data_direction
19 );
20 }
21

22 /* Populate `request`, `send_wr`... */
23

24 rc = ib_post_send(
25 info->id->qp, // struct ib_qp * ("Queue Pair")
26 &send_wr, // const struct ib_recv_wr *
27 NULL, // const struct ib_recv_wr ** (err handling)
28 );
29

30 /* Error handling... */
31

32 return rc;
33 }

Line 13 writes back CPU cache lines to be visible for RDMA NIC in preparation for
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DMA operations when the posted send request is worked upon.

Upon reception: recv_done recv_done is called when the RDMA subsystem
works on the received payload over RDMA.

Mirroring the case for smbd_post_send , it invalidates CPU cache lines for DMA-ed
data to be visible at CPU cores prior to any operations on received data:

1 /* In fs/smb/client/smbdirect.c */
2 static void recv_done(
3 struct ib_cq *cq, // "Completion Queue"
4 struct ib_wc *wc, // "Work Completion"
5 ) {
6 struct smbd_data_transfer *data_transfer;
7 struct smbd_response *response = container_of(
8 wc->wr_cqe, // ptr: pointer to member
9 struct smbd_response, // type: type of container struct

10 cqe, // name: name of member in struct
11 ); // Cast member of struct into containing struct (C magic)
12 struct smbd_connection *info = response->info;
13 int data_length = 0;
14

15 /* Logging, error handling... */
16

17 /* Likewise, RDMA wrapper over DMA API1 */
18 ib_dma_sync_single_for_cpu(
19 wc->qp->device,
20 response->sge.addr,
21 response->sge.length,
22 DMA_FROM_DEVICE,
23 );
24

25 /* ... */
26 }
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Software Coherency Latency

Coherency must be maintained at software level when hardware cache coherency can-
not be guaranteed for some specific ISA (as established in subsection 2.3.5). There is,
therefore, interest in knowing the latency of coherence-maintenance operations for per-
formance engineering purposes, for example OS jitter analysis for scientific computing
in heterogeneous clusters and, more pertinently, comparative analysis between software
and hardware-backed DSM systems (e.g. [50, 68]). Such an analysis is crucial to being
well-informed when designing a cross-architectural DSM system over RDMA.

The purpose of this chapter is hence to provide a statistical analysis over software
coherency latency in ARM64 systems by instrumenting hypothetical scenarios of
software-initiated coherence maintenance in ARM64 test-benches.

The rest of the chapter is structured as follows:

• Experiment Setup covers the test-benches used for instrumentation, including
the kernel version, distribution, and the specifications of the instrumented (bare-
metal/virtual) machine.

• Methodology covers the kernel module and workload used for instrumentation
and experimentation, including changes made to the kernel, the kernel module,
and userspace programs used for experimentation.

• Results covers the results gathered during instrumentation from various test-
benches, segmented by experiment.

• Discussion identifies key insights from experimental results, as well as deficien-
cies in research method and possible directions of future works.

3.1 Experiment Setup

3.1.1 QEMU-over-x86: star

The primary source of experimental data come from a virtualized machine: a virtualized
guest running a lightly-modified Linux v6.7.0 preemptive kernel with standard non-
graphical Debian 12 distribution installed to provide userspace support. Table 3.1

17
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describes the specifics of the QEMU-emulated ARM64 test-bench, while table 3.2
describes the specifics of its host.

Processors QEMU virt-8.2 (3 × 2-way SMT; emulates Cortex-A76)
Frequency 2.0 GHz (sic.3)

CPU Flags
fp asimd evtstrm aes pmull sha1

sha2 crc32 atomics fphp asimdhp cpuid
asimdrdm lrcpc dcpop asimddp

NUMA Topology 1: {P0, . . . , P5}
Memory 1: 4GiB
Kernel Linux 6.7.0 (modified) SMP Preemptive

Distribution Debian 12 (bookworm)

Table 3.1: Specification of star

Processors AMD Ryzen 7 4800HS (8 × 2-way SMT)
Freuqnecy 2.9 GHz (4.2 GHz Turbo)

NUMA Topology 1: {P0, . . . , P15}

Cache Structure
L3 P0 . . .P7: 4MiB, P8 . . .P15: 4MiB
L2 Per core4: 512KiB
L1 Per core: d-cache 32KiB, i-cache 32KiB

Memory 1: 40 GiB DDR4-3200 SO-DIMM
Filesystem ext4 on Samsung SSD 970 EVO Plus

Kernel Linux 6.7.9 (arch1-1) SMP Preemptive
Distribution Arch Linux

Table 3.2: Specification of Host

3.1.2 Ampere Altra: rose

Processors Ampere Altra (32 core; Neoverse N1 microarch.)
Frequency 1.7 GHz (3.0 GHz max)

NUMA Topology 1: {P0, . . . , P31}

Cache Structure
L2 Per core: 1MiB
L1 Per core: d-cache 64KiB, i-cache 64KiB

Memory 1: 256 GiB DDR4-3200 DIMM ECC
Kernel Linux 6.7.0 (modified) SMP Preemptive

Distribution Ubuntu 22.04 LTS (Jammy Jellyfish)

Table 3.3: Specification of rose

Additional to virtualized testbench, I have had the honor to access rose , a ARMv8 server
rack system hosted by the [TODO] PLACEHOLDER at the Informatics Forum, through

3As reported from lscpu . Likely not reflective of actual emulation performance.
4i.e., per 2 threads. For example: P0, P1 comprises one core.
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the invaluable assistance of my primary advisor, Amir Noohi, for instrumentation of
similar experimental setups on server-grade bare-metal systems.

The specifications of rose is listed in table 3.3.

3.2 Methodology

3.2.1 Exporting dcache_clean_poc

As established in subsection 2.3.5, software cache-coherence maintenance operations
(e.g., dcache_[clean|inval]_poc) are wrapped behind DMA API function calls and
are hence unavailable for direct use in drivers. Moreover, instrumentation of assembly
code becomes non-trivial when compared to instrumenting C function symbols, likely
due to automatically stripped assembly symbols in C object files. Consequently, it
becomes impossible to utilize the existing instrumentation tools available in the Linux
kernel (e.g., ftrace) to trace assembly routines.

In order to convert dcache_clean_poc to a traceable equivalent, a wrapper function
__dcache_clean_poc is created as follows:

1 /* In arch/arm64/mm/flush.c */
2 #include <asm/cacheflush_extra.h>
3

4 /* ... */
5

6 void __dcache_clean_poc(ulong start, ulong end)
7 {
8 dcache_clean_poc(start, end); // see arch/arm64/mm/cache.S
9 }

10 EXPORT_SYMBOL(__dcache_clean_poc);

Correspondingly, the header arch/arm64/include/asm/cacheflush_extra.h is
created to export the symbol __dcache_clean_poc into kernel module namespace.
This has the additional benefit of creating a corresponding ftrace target, allowing
the symbol to be instrumented using existing Linux instrumentation mechanisms. The
entirety of modifications done to the in-tree v6.7.0 kernel culminates to a 44-line patch
file (inclusive of metadata, context, etc.). It is expected that the introduction of addi-
tional symbols would increment the function latency by (at least) the amount of time
necessary to fetch the instruction, but such latency is expected to be miniscule when
compared to cache coherency operations.

3.2.2 Kernel Module: my_shmem

To simulate module-initiated cache coherence behavior over allocated kernel buffers,
a kernel module, my_shmem , is written such that specially-written userspace programs
could cause the kernel to invoke __dcache_clean_poc at will.



Chapter 3. Software Coherency Latency 20

3.2.2.1 my_shmem: Design

The my_shmem module is a utility for (lazily) allocating one or more kernel-space
pages, re-mapping them into the userspace for reading/writing operations, and invoking
cache-coherency operations as if accessed via DMA on unmap.

To emulate streaming DMA mapping allocation, the module is designed to allocate
memory directly from the page allocator, as required by the kernel documentation’s
guideline, What Memory is DMA’able?[51]:

If you acquired your memory via the page allocator (i.e. __get_free_page*())
or the generic memory allocators (i.e. kmalloc() or kmem_cache_alloc())
then you may DMA to/from that memory using the addresses returned
from those routines.

To enable page sharing between user-space processes, the module implements a alloca-
tion accounting mechanism for re-mapping existing allocations to multiple user-space
address spaces on-demand. Specifically, it involves:

• Allocation of contiguous pages to some user-specified order (i.e., 2order pages).

• Correct re-mapping behavior of existing allocations, for example computing
the correct offset when re-mapping a multi-page allocation during any given
page-fault, which may not be aligned with the first page in the allocation.

• Software cache coherency maintenance on removal of mapping from any user-
space program. This is intended to simulate the behavior of DMA API in a system
without any specific DMA hardware.

The module should hence support userspace programs to be able to perform as follows:

1. Open the “device” file as exposed by the kernel module.

2. mmap on the opened file descriptor, as per POSIX syscall API.

3. Allocate memory due to load/store actions within the mmap-ed memory mapping.

4. Close the memory mapping, which initiates a simulated software cache coherency
maintenance operation.

3.2.2.2 my_shmem: Implementation

To implement the features as specified, my_shmem exposes itself as a character de-
vice file /dev/my_shmem; implements file operations open , mmap, and release; and
implements vm operations close and fault .

Additionally, the parameter max_contiguous_alloc_order is exposed as a writable
parameter file inside sysfs to manually control the number of contiguous pages allocated
per module allocation.

The entire kernel module used for experiment amount to around 400 lines of kernel-
space code.
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Data Structures The primary functions of my_shmem is to provide correct accounting
of current allocations via the kernel module in addition to allocating on-demand. Hence,
to represent a in-kernel allocation of multi-page contiguous buffer, define struct
my_shmem_alloc as follows:

1 struct my_shmem_alloc {
2 struct page *page; // GFP alloc repr, points to HEAD page
3 ulong alloc_order; // alloc buffer length: 2alloc_order

4 struct list_head list; // kernel repr of doubly linked list
5 };

.list defines the Linux kernel implementation of a element of a generically-typed
doubly linked list, such that multiple allocations could be kept during the lifetime of the
module. The corresponding linked list is defined as follows:

static LIST_HEAD(my_shmem_allocs);

To book-keep the real amount of pages allocated during the module’s lifetime, define:

static size_t my_shmem_page_count;

Finally, to ensure mutual exlusion of the module’s critical sections while running inside
a SMP (Symmetric Multi-Processing) kernel, define mutex:

static DEFINE_MUTEX(my_shmem_allocs_mtx);

This protects all read/write operations to my_shmem_allocs and my_shmem_page_count
against concurrent module function calls.

File Operations The Linux kernel defines file operations as a series of module-specific
callbacks whenever the userspace invokes a corresponding syscall on the (character)
device file. These callbacks may be declared inside a file_operations struct[17],
which provides an interface for modules on file-related syscalls:

1 /* In include/linux/fs.h */
2 struct file_operations {
3 struct module *owner;
4 /* ... */
5 int (*mmap) (
6 struct file *, // opened (device) file
7 struct vm_area_struct * // kernel repr of mapping
8 ); // Downstream of syscall: mmap
9 /* ... */

10 int (*open) (
11 struct inode *, // inode of file to be opened
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12 struct file * // opened (generic) file
13 ); // Downstream of libc: open
14 /* ... */
15 int (*release) (
16 struct inode *, // inode of file to be closed
17 struct file * // to be closed
18 ); // Downstream of libc: close
19 /* ... */
20 } __randomize_layout;

The corresponding structure for the particular module is hence defined as follows:

1 /* In my_shmem.c */
2 static const struct file_operations my_shmem_fops = {
3 .owner = THIS_MODULE,
4 .open = my_shmem_fops_open,
5 .mmap = my_shmem_fops_mmap,
6 .release = my_shmem_fops_release,
7 };

Implementation of .open is simple. It suffices to install the module-specific struct
file_operations (i.e., my_shmem_fops) into the struct file passed in argument,
which is constructed downstream via kernel’s generic file opening mechanisms.

Likewise for .release , which does nothing except to print a debug message into the
kernel ring buffer.

To implement .mmap , the kernel module attempts to re-map as much allocations into
the given struct vm_area_struct as possible without making any allocation.
This centralizes allocation logic into the page fault handler, which is described later in
3.2.2.2.

1 static int my_shmem_fops_mmap(
2 struct file *filp,
3 struct vm_area_struct *vma
4 ) {
5 int ret = 0;
6 const ulong vma_pg_count =
7 (vma->vm_end - vma->vm_start) » PAGE_SHIFT;
8 struct page *pg;
9 ulong tgt_addr = vma->vm_start; // Current remap target addr

10 ulong src_head_pfn; // Current remap source: head PFN
11 ulong src_pg_nr; // Current remap source: length
12 ulong vma_remainder_count = vma_pg_count; // vma: remain pgs
13

14 /* Lock mutex... */
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15 /* Iterate over allocations, remap as much as possible */
16 struct my_shmem_alloc *curr;
17 list_for_each_entry(curr, &my_shmem_allocs, list) {
18 /* exit if all of vma is mapped */
19 if (tgt_addr >= vma->vm_end)
20 break;
21

22 /* decrement page offset until alloc intersects */
23 if (vma_pgoff > ORDER_TO_PAGE_NR(curr->alloc_order)) {
24 vma_pgoff -= ORDER_TO_PAGE_NR(curr->alloc_order);
25 continue;
26 }
27

28 /* intersects, hence compute PFN to remap */
29 pg = curr->page;
30 get_page(pg); // increment alloc. refcount
31 src_head_pfn = page_to_pfn(pg) + vma_pgoff;
32 src_pg_nr = min(
33 vma_remainder_count,
34 ORDER_TO_PAGE_NR(curr->alloc_order) - vma_pgoff
35 );
36 ret = remap_pfn_range(
37 vma, // remap target VM area
38 tgt_addr, // page-aligned tgt addr
39 src_head_pfn, // kernel PFN as source
40 src_pg_nr * PAGE_SIZE, // size of remap region
41 vma->vm_page_prot, // page protection flags
42 );
43 /* if (ret): goto error handling... */
44 /* Prepare for next iteration */
45 tgt_addr += src_pg_nr * PAGE_SIZE;
46 vma_remainder_count -= src_pg_nr;
47 }
48

49 /* return or error handling... */
50 }

VM Operations On mmap, the Linux kernel installs a new VMA (Virtual Memory
Area) as the internal representation for the corresponding mapping in process address
space[17]. Likewise file operations, kernel modules may implement callbacks in
vm_operations_struct to define module-specific operations per VMA access at
userspace:



Chapter 3. Software Coherency Latency 24

1 /* In include/linux/mm.h */
2 struct vm_operations_struct {
3 /* ... */
4 void (*close)(struct vm_area_struct * area);
5 /* ... */
6 vm_fault_t (*fault)(
7 struct vm_fault *vmf // Page fault descriptor
8 ); // Page fault handler
9 /* ... */

10 };

The corresponding structure for the particular module is hence defined as follows:

1 /* In my_shmem.c */
2 static const struct vm_operations_struct my_shmem_vmops = {
3 .close = my_shmem_vmops_close,
4 .fault = my_shmem_vmops_fault,
5 };

Function .fault is implemented such that allocations are performed lazily until the
number of pages allocated inside the module superseeds the faulting page offset wrt. its
mapping. A simple implementation of this is to, given the number of pages allocated is
insufficient to service this page fault, continuously allocate unitl this condition becomes
valid:

1 static vm_fault_t my_shmem_vmops_fault(struct vm_fault *vmf)
2 {
3 vm_fault_t ret = VM_FAULT_NOPAGE; // See 1
4 ulong tgt_offset = vmf->vma->vm_pgoff + vmf->pgoff;
5

6 /* Lock mutex... */
7 for (;;) {
8 /* When we already allocated enough, remap */
9 if (tgt_offset < my_shmem_page_count)

10 return __my_shmem_fault_remap(vmf); // See 2
11

12 /* Otherwise, allocate 2order pages and retry */
13 struct my_shmem_alloc *new_alloc_handle = kzalloc(
14 sizeof(struct my_shmem_alloc),
15 GFP_KERNEL, // kernel-only allocation rule flag
16 );
17 /* if (!new_alloc_handle) goto error handling... */
18

19 struct page *new_alloc_pg = alloc_pages(
20 GFP_USER, // user-remapped kernel alloc rule flag
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21 max_contiguous_alloc_order,
22 ); // Alloc 2order pages
23 /* if (!new_alloc_pg) goto error handling... */
24

25 /* Fill in handle data */
26 new_alloc_handle->page = new_alloc_pg;
27 new_alloc_handle->alloc_order = max_contiguous_alloc_order;
28 /* Add `new_alloc_handle` to `my_shmem_allocs`... */
29

30 /* Prepare for next iteration */
31 my_shmem_page_count +=
32 ORDER_TO_PAGE_NR(new_alloc_handle->alloc_order);
33 }
34

35 /* Error handling... */
36 }

Several implementation quirks that warrant attention are as follows:

1. my_shmem_vmops_fault returns VM_FAULT_NOPAGE on success. This is due to
the need to support multi-page contiguous allocation inside the kernel module for
performance analysis purposes.

Usually, the vm_operations_struct API expects its .fault implementations
to assign struct page * to vmf->page on return. Here, vmf->page represents
the page-aligned allocation that is to be installed into the faulting process’s page
table, thereby resolving the page fault.

However, this expectation causes a conflict between the module’s ability to allo-
cate multi-page contiguous allocations and its ability to perform page-granularity
mapping of underlying allocations (no matter the size of the allocation). Because
GFP-family of page allocators use struct page as the representation of the
entire allocation (no matter the number of pages actually allocated), it is incorrect
to install the struct page representation of a multi-page contiguous allocation
to any given page fault in case that the page fault offset is misaligned with the
alignment of the allocation (an example of such case arising could be found at
3.1).

Consequently, VM_FAULT_NOPAGE is raised to indicate that vmf->page would
not be assigned with a reasonable value, and the callee guarantees that corre-
sponding page table entries would be installed when control returns to caller. The
latter guarantee is respected with the use of remap_pfn_range , which eventually
calls into remap_pte_range , thereby modifying the page table.

2. __my_shmem_fault_remap serves as inner logic for when outer page fault han-
dling (allocation) logic deems that a sufficient number of pages exist for handling
the current page fault. As its name suggests, it finds and remaps the correct
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Figure 3.1: Misaligned Kernel Page Remap. Left column represents physical memory
(addressed by PFN); center column represents in-module accounting of allocations;

right column represents process address space.

allocation into the page fault’s parent VMA (assuming that such allocation, of
course, exists).

The logic of this function is similar to my_shmem_fops_mmap . For a code excerpt
listing, refer to [TODO] Appendix ???.

Function .close emulates synchronization behavior whenever a VMA is removed from
a process’s address space (e.g., due to munmap). Given a removed VMA as argument,
it computes the intersecting allocations and invokes dcache_clean_poc on each such
allocations. While this results in conservative approximation of cleaned cache entries,
it is nevertheless good for instrumentation purposes, as the amount of pages cleaned
per invocation becomes invariable with respect to how the VMA was remapped – a
misaligned VMA will not result in less pages being flushed in a given allocation.

1 static void my_shmem_vmops_close(struct vm_area_struct *vma)
2 {
3 size_t vma_pg_count =
4 (vma->vm_end - vma->vm_start) » PAGE_SHIFT;
5 size_t vma_pg_off = vma->vm_pgoff;
6

7 /* Lock mutex... */
8 struct my_shmem_alloc *entry;
9 list_for_each_entry(entry, &my_shmem_allocs, list) {

10 const ulong entry_pg_count =
11 ORDER_TO_PAGE_NR(entry->alloc_order);
12

13 /* Loop till entry intersects with start of VMA */
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14 if (vma_pg_off > entry_pg_count) {
15 vma_pg_off -= entry_pg_count;
16 continue;
17 }
18

19 /* All of VMA cleaned: exit */
20 if (!vma_pg_count)
21 break;
22

23 /* entry intersects with VMA - emulate clean */
24 struct page *pg = entry->page;
25 ulong kvaddr_bgn = (ulong) page_address(pg);
26 ulong kvaddr_end =
27 kvaddr_bgn + entry_pg_count * PAGE_SIZE;
28 __dcache_clean_poc(kvaddr_bgn, kvaddr_end); // See 14
29 put_page(pg); // decrement refcount
30

31 /* Prepare for next iteration */
32 vma_pg_count -= min(
33 entry_pg_count - vma_pg_off,
34 vma_pg_count
35 );
36 if (vma_pg_off != 0) // ~ first intersection
37 vma_pg_off = 0;
38 }
39

40 /* cleanup... */
41 }

sysfs Parameter Finally, my_shmem exposes a tunable sysfs parameter for adjusting
the number of pages allocated per allocation in my_shmem_vmops_fault . The param-
eter, max_contiguous_alloc_order , defines the order o for allocation from page
allocator such that, for each allocation, 2o contiguous pages are allocated at once.

To adjust the parameter (for example, set o← 2), one may run as follows in a sh-
compatible terminal:

$ echo 2 > \
/sys/module/my_shmem/parameters/max_contiguous_alloc_order

Consequently, all allocations occuring after this change will be allocated with a 4-page
contiguous granularity. Upon further testing, the maximum value allowed here is 10
(i.e., 210 = 1024 4K pages).
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3.2.3 Instrumentation: ftrace and bcc-tools

We use two instrumentation frameworks to evaluate the latency of software-initiated
coherency operations. ftrace is the primary kernel tracing mechanism across multiple
(supporting) architectures, which supports both static tracing of tracepoints and dynamic
tracing of function symbols:

• Static tracepoints describe tracepoints compiled into the Linux kernel. They are
defined by kernel programmers and is otherwise known as event tracing.

• Dynamic ftrace support is enabled by self-modifying the kernel code to replace
injected placeholder nop-routines with ftrace infrastructure calls. This allows
for function tracing of all function symbols present in C object files created for
linkage. [61]

Because we do not inline __dcache_clean_poc, we are able to include its symbol
inside compiled C object files and hence expose its internals for dynamic tracing.

bcc-tools, on the other hand, provide an array of handy instrumentation tools that
is compiled just-in-time into BPF programs and ran inside a in-kernel virtual ma-
chine. Description of how BPF programs are parsed and run inside the Linux kernel is
documented in the kernel documentations [43]. The ability of bcc/libbpf programs
to interface with both userspace and kernelspace function tracing mechanisms make
bcc-tools ideal as a easy tracing interface for both userspace and kernelspace tracing.

3.2.4 Userspace Programs

Finally, two simple userspace programs are written to invoke the corresponding ker-
nelspace callback operations – namely, allocation and cleaning of kernel buffers for
simulating DMA behaviors. To achieve this, it simply mmaps the amount of pages passed
in as argument and either reads or writes the entirety of the buffer (which differentiates
the two programs). A listing of their logic is at [TODO] Appendix ???.

3.3 Results

3.3.1 Controlled Allocation Size; Variable Allocation Count

Experiments are first conducted over software coherency operation latencies over
variable mmap-ed memory area sizes while keeping the underlying allocation sizes to
4KiB (i.e., single-page allocation). All experiments are conducted on star on mmap
memory areas ranged from 16KiB till 1GiB, in which we control the number of sampled
coherency operations to 1000. Data gathering is performed using the trace-cmd
front-end for ftrace . The results of the experiments conducted is listed in figure 3.2.

Additionally, we also obtain the latencies of TLB flushes due to userspace programs, as
listed in figure 3.3.
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Notes on Long-Tailed Distribution

We identify that a long-tailed distribution of latencies exist for both figures (3.2, 3.4). For
software coherency operations, we identify this to be partially due to softirq preemption
(notably, RCU maintenance), which take higher precendence compared to “regular”
kernel routines. A brief description of processor contexts defined in the Linux kernel is
listed in Appendix ???.

For TLB operations, we identify the cluster of long-runtime TLB flush operations (e.g.,
around 104 µs) to be interference from mm cleanup on process exit.

Moreover, latencies to software coherency operations are highly system-specific. On
rose, data gathered from similar experimentations have shown to be 1/10-th of the
latencies gathered from star , which (coincidentially) reduces the likelihood of long-
tailed distributions forming due to RCU softirq preemption.

3.3.2 Controlled Allocation Count; Variable Allocation Size

We also conduct experiments over software coherency operations latencies over fixed
mmap-ed memory area sizes while varying the underlying allocation sizes. This is
achieved by varying the allocation order – while 0-order allocation allocates 20 = 1
page per allocation, a 8-order allocation allocates 28 = 256 contiguous pages per
allocation. All experiments are conducted on star . The results for all experiments
are gathered using bcc-tools , which provide utilities for injecting BPF-based tracing
routines. The results of these experimentations are visualized in figure 3.4, with N ≥ 64
per experiment.

Order 25p 50p (Median) 75p 99p
0 5.968 9.808 15.808 58.464
2 8.960 13.152 17.776 39.184
4 19.216 21.120 23.648 123.984
6 67.376 70.352 74.304 103.120
8 278.784 303.136 324.048 1783.008

10 1050.752 1141.312 1912.576 2325.104

Table 3.4: Coherency op latency of Variable-order Contiguous Allocation. Time listed in
µs. N = 100 across allocation orders.

3.4 Discussion

Figures 3.2, 3.4 exhibits that, in general, coherency maintenance operation is unrelated
with the size of the mapped memory area and correlated with how large a single
contiguous allocation is made. We especially note that the runtime of each software-
initiated coherency maintenance operation does not grow linearly with allocation size.
Given that both axis of figure 3.4 is on a log-scale, with the “order” axis interpretable
as a log2 scale of number of contiguous 4K pages, a perfect linear correlation between
allocation size and latency would see a roughly linear interpolation between the data
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points. This is obviously not the case for figure 3.4, which sees software coherency
operation latency increasing drastically once order ≥ 6 (i.e., 64 contiguous pages), but
remain roughly comparable for smaller orders.

On the other hand, linearly increasing coherency operation latencies exhibited for
higher-order allocations have their runtimes amortized by two factors:

1. Exponentially-decreasing number of buffers (allocations) made in the underlying
kernel module, which corresponds to less memory allocation calls made during
runtime.

2. Latency of contiguous allocation operations (i.e., alloc_pages) does not grow
significantly in relation to the size of the allocation.

Due to both factors, it remains economic to allocate larger contiguous allocations for
DMA pages that are subject to frequent cache coherency maintenance operations than
applying a “scatter-gather” paradigm to the underlying allocations.

3.4.1 Hugepages and RDMA-based DSM

Hugepage is an architectural feature that allows an aligned, larger-than-page-size con-
tiguous memory region to be represented using a single TLB entry. x86-64, for example,
supports (huge)pages to the size of 4KiB, 2MiB, or 1GiB [31]. ARM64 supports a
more involved implementation of TLB entries, allowing it to represent more variable
pages sizes in one TLB entry (up to 16GiB) [32]. Hypothetically, using hugepages as
backing store for very large RDMA buffers reduces address translation overhead, either
by relieving TLB pressure or through reduced page table indirections [71].

Specifically, the kernel developers identify the following factors that allow hugepages
to create faster large-working-set programs [64]:

1. TLB misses run faster.

2. A single TLB entry corresponds to a much larger section of virtual memory,
thereby reducing miss rate.

In general, performance critical computing applications dealing with large memory
working sets will be running on top of hugetlbfs – hugepage mechanism exposed by the
Linux kernel to userspace [64]. Alternatively, the use of hugepages could be dynamically
and transparently enabled and disabled in userspace using transparent hugepages
supported by contemporary Linux kernels [64]. This enhances programmer productivity
in userspace programs when relying on a hypothetical transparent hugepage-enabled in-
kernel DSM system for heterogenenous data processing tasks on variable-sized buffers,
though few in-kernel mechanisms actually incorporate transparent hugepages support –
at the time of writing, only anonymous vmas (e.g., stack, heap, etc.) and tmpfs/shmem
incorporates transparent hugepage [64].

We identify transparent hugepage support as one possible direction to improving in-
kernel DSM system performance. Traditionally, userspace programs who really wishes
to allocate hugepages rely on libhugetlbfs as interface to the Linux kernel’s hugetlbfs
mechanism. These techniques remain heavily reliant on programmer discretion which
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is fundamentally at odds with what the parent project of this paper envisions: a re-
mote compute node is exposed as a DMA-capable accelerator to another, whereby two
compute nodes could transparently perform computation on each other’s memory via
heterogeneous memory management mechanism. Because this process is transparent
to the userspace programmer (who only have access to e.g., /dev/my_shmem), ideally
the underlying kernel handler to /dev/my_shmem should abstract away the need for
hugepages for very large allocations (since this is not handled by libhugetlbfs). Further-
more, transparent hugepage support would also hypothetically allow for shared pages to
be promoted and demoted on ownership transfer time, thereby allowing for dynamically-
grained memory sharing while maximizing address translation performance.

Furthermore, further studies remains necessary to check whether the use of (transparent)
hugepages significantly benefit a real implementation of an in-kernel DSM system.
Current implementation for alloc_pages does not allow for allocation of hugepages
even when the allocation order is sufficiently large. Consequently, future studies need
to examine alternative implementations that incorporate transparent hugepages into the
DSM system. One candidate that could allow for hugepage allocation, for example,
is to directly use alloc_pages_mpol instead of alloc_pages , as is the case for the
current implementation of shmem in kernel.

3.4.2 Access Latency Post-PoC

This chapter solely explores latencies due to software cache coherency operations. In
practice, it may be equally important to explore the latency incurred due to read/write
accesses after PoC is reached, which is almost always the case for any inter-operation
between CPU and DMA engines.

Recall from section 2.3.5 that ARMv8-A defines Point of Coherency/Unification within
its coherency domains. In practice, it often implies an actual, physical point to which
cached data is evicted to:

• Consider a ARMv8-A system design with a shared L2/lowest-level cache that
is also snooped by the DMA engine. Here, the Point-of-Coherency could be
defined as the shared L2 cache to which higher-level cache entries are cleaned or
invalidated.

• Alternatively, a DMA engine may be capable of snooping all processor caches.
The Point-of-Coherency could then be defined merely as the L1 cache, with some
overhead depending on how the DMA engine accesses these caches.

Further studies are necessary to examine the latency after coherency maintenance
operations on ARMv8 architectures on various systems, including access from DMA
engine vs. access from CPU, etc.

3.4.3 Reflection

We identify the following weaknesses within our experiment setup that undermines the
generalizability of our work.
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What About dcache_inval_poc? Due to time constraints, we were unable to
explore the latencies posed by dcache_inval_poc , which will be called whenever the
DMA driver attempts to prepare the CPU to access data modified by DMA engine.
Further studies that expose dcache_inval_poc for similar instrumentation should be
trivial, as the steps necessary should mirror the case for dcache_clean_poc listed
above.

Do Instrumented Statistics Reflect Real Latency? It remains debateable whether
the method portrayed in section 3.2, specifically via exporting dcache_clean_poc to
driver namespace as a traceable target, is a good candidate for instrumenting the “actual”
latencies incurred by software coherency operations.

For one, we specifically opt not to disable IRQ when running __dcahce_clean_poc .
This mirrors the implementation of arch_sync_dma_for_cpu , which:

1. is (at least) called under process context.

2. does not disable IRQ downstream.

Similar context is also observed for upstream function calls, for example
dma_sync_single_for_device . As a consequence, kernel routines running inside
IRQ/softirq contexts are capable of preempting the cache coherency operations, hence
preventing early returns. The effect of this on tail latencies have been discussed in
section 3.3.1.

On the other hand, it may be argued that analyzing software coherency operation latency
on a hardware level better reveals the “real” latency incurred by coherency maintenance
operations during runtime. Indeed, latencies of clflush-family of instructions per-
formed on x86 chipsets measured in units of clock cycles [38, 24] amount to around
250 cycles – significantly less than microsecond-grade function call latencies for any
GHz-capable CPUs. We argue that because an in-kernel implementation of a DSM
system would more likely call into the exposed driver API function calls as opposed to
individual instructions – i.e., not writing inline assemblies that “reinvent the wheel” –
instrumentation of relatively low-level and synchronous procedure calls is more crucial
than instrumenting individual instructions.

Lack of Hardware Diversity The majority of data gathered throughout the experiments
come from a single, virtualized setup which may not be reflective of real latencies
incurred by software coherency maintenance operations. While similar experiments
have been conducted in bare-metal systems such as rose , we note that rose’s Ampere
Altra is certified SystemReady SR by ARM [45] and hence supports hardware-coherent
DMA access (by virture of ARM Server Base System Architecture which stipulates
hardware-coherent memory access as implemented via MMU) [44], and hence may not
be reflective of any real latencies incurred via coherency maintenance.

On the other hand, we note that a growing amount of non-hardware-coherent ARM
systems with DMA-capable interface (e.g., PCIe) are quickly becoming mainstream.
Newer generation of embedded SoCs are starting to feature PCIe interface as part of
their I/O provisions, for example Rockchip’s RK3588 [14] and Broadcom’s BCM2712
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[1], both of which were selected for use in embedded and single-board systems, though
(at the time of writing) with incomplete kernel support. Moreover, desktop-grade ARM
CPUs and SoCs are also becoming increasingly common, spearheaded by Apple’s
M-series processors as well as Qualcomm’s equivalent products, all of which, to the
author’s knowledge, do not implement hardware coherence with their PCIe peripherals.
Consequently, it is of interest to evaluate the performance of software-initiated cache
coherency operations commonly applied in CPU-DMA interoperations on such non-
SystemReady SR systems.

Orthogonally, even though the virt emulated platform does not explicitly support
hardware-based cache coherency operations, the underlying implementation of its
emulation on x86 hosts is not explored in this study. Because (as established) the
x86 ISA implements hardware-level guarantee of DMA cache coherence, if no other
constraints exist, it may be possible for a “loose” emulation of the ARMv8-A ISA
to define PoC and PoU operations as no-ops instead, though this theory cannot be
ascertained without any cross-correlation with virt’s source code. Figure 3.4 also
disputes this theory, as a mapping from ARMv8-A PoC instructions to x86 no-op
instructions would likely not cause differing latency magnitude over variable-sized
contiguous allocations.

Inconsistent Latency Magnitudes Across Experiments We recognize . . . . We
deduce this is due to one important variable across all experiments that we failed to
control – power supply to host machine.
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Figure 3.2: Coherency operation latency. Allocation on per-page basis. Vertical lines
represent 25th, 50th, and 75th percentiles respectively.
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Figure 3.3: TLB operation latency. Allocation on per-page basis. Vertical lines represent
25th, 50th, and 75th percentiles respectively.
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Conclusion
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[7] ARM. ARMő Cortexő-A Series Programmer’s Guide for ARMv8-A. 2015. URL:

https://developer.arm.com/documentation/den0024/a .
[8] Hans J Boehm and Lawrence Crowl. C++ Atomic Types and Operations. 2007.

URL: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/
n2427.html .

[9] BS ISO/IEC 9899:2011: Information technology. Programming languages. C.
eng. 2013.

[10] Javier Cabezas et al. “GPU-SM: shared memory multi-GPU programming”. In:
Proceedings of the 8th Workshop on General Purpose Processing using GPUs.
2015, pp. 13–24.

[11] Qingchao Cai et al. “Efficient distributed memory management with RDMA and
caching”. In: Proceedings of the VLDB Endowment 11.11 (2018), pp. 1604–1617.

[12] John B Carter, John K Bennett, and Willy Zwaenepoel. “Implementation and
performance of Munin”. In: ACM SIGOPS Operating Systems Review 25.5
(1991), pp. 152–164.

[13] David Chaiken, John Kubiatowicz, and Anant Agarwal. “LimitLESS directories:
A scalable cache coherence scheme”. In: Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS IV. Santa Clara, California, USA: Association for Computing
Machinery, 1991, pp. 224–234. ISBN: 0897913809. DOI: 10 . 1145 / 106972 .
106995 . URL: https://doi.org/10.1145/106972.106995 .

[14] Rockchip Electronics Co. Ltd. RK3588. 2022. URL: https : / / www . rock -
chips.com/a/en/products/RK35_Series/2022/0926/1660.html .

[15] Jonathan Corbet. 2021. URL: https://lwn.net/Articles/855328/ .
[16] Jonathan Corbet. Heterogeneous memory management meets EXPORT_SYM-

BOL_GPL(). 2018. URL: https://lwn.net/Articles/757124/ .

38

https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://www.phoronix.com/search/Heterogeneous%20Memory%20Management
https://www.phoronix.com/search/Heterogeneous%20Memory%20Management
https://uawartifacts.blob.core.windows.net/upload-files/Altra_Max_Rev_A1_DS_v1_15_20230809_b7cdce449e_424d129849.pdf
https://uawartifacts.blob.core.windows.net/upload-files/Altra_Max_Rev_A1_DS_v1_15_20230809_b7cdce449e_424d129849.pdf
https://hadoop.apache.org/
https://spark.apache.org/
https://developer.arm.com/documentation/den0024/a
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
https://doi.org/10.1145/106972.106995
https://doi.org/10.1145/106972.106995
https://doi.org/10.1145/106972.106995
https://www.rock-chips.com/a/en/products/RK35_Series/2022/0926/1660.html
https://www.rock-chips.com/a/en/products/RK35_Series/2022/0926/1660.html
https://lwn.net/Articles/855328/
https://lwn.net/Articles/757124/


BIBLIOGRAPHY 39

[17] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux device
drivers. " O’Reilly Media, Inc.", 2005.

[18] Maria Couceiro et al. “D2STM: Dependable distributed software transactional
memory”. In: 2009 15th IEEE Pacific Rim International Symposium on Depend-
able Computing. IEEE. 2009, pp. 307–313.

[19] Mattias De Wael et al. “Partitioned global address space languages”. In: ACM
Computing Surveys (CSUR) 47.4 (2015), pp. 1–27.

[20] Zhuocheng Ding. “vDSM: Distributed Shared Memory in Virtualized Environ-
ments”. In: 2018 IEEE 9th International Conference on Software Engineering
and Service Science (ICSESS). 2018, pp. 1112–1115. DOI: 10.1109/ICSESS.
2018.8663720 .

[21] Noel Eisley, Li-Shiuan Peh, and Li Shang. “In-network cache coherence”. In:
2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06). IEEE. 2006, pp. 321–332.

[22] Wataru Endo, Shigeyuki Sato, and Kenjiro Taura. “MENPS: a decentralized
distributed shared memory exploiting RDMA”. In: 2020 IEEE/ACM Fourth
Annual Workshop on Emerging Parallel and Distributed Runtime Systems and
Middleware (IPDRM). IEEE. 2020, pp. 9–16.

[23] Brett Fleisch and Gerald Popek. “Mirage: A coherent distributed shared memory
design”. In: ACM SIGOPS Operating Systems Review 23.5 (1989), pp. 211–223.

[24] Agner Fog. “Instruction tables”. In: Technical University of Denmark (2018).
[25] Davide Giri, Paolo Mantovani, and Luca P Carloni. “NoC-based support of hetero-

geneous cache-coherence models for accelerators”. In: 2018 Twelfth IEEE/ACM
International Symposium on Networks-on-Chip (NOCS). IEEE. 2018, pp. 1–8.

[26] Mark Harris. Unified memory for cuda beginners. 2017. URL: https://developer.
nvidia.com/blog/unified-memory-cuda-beginners/ .

[27] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[28] Stephen Alan Holsapple. DSM64: A Distributed Shared Memory System in
User-Space. California Polytechnic State University, 2012.

[29] Yang Hong et al. “Scaling out NUMA-aware applications with RDMA-based
distributed shared memory”. In: Journal of Computer Science and Technology
34 (2019), pp. 94–112.

[30] Weiwu Hu, Weisong Shi, and Zhimin Tang. “JIAJIA: A software DSM system
based on a new cache coherence protocol”. In: High-Performance Computing
and Networking: 7th International Conference, HPCN Europe 1999 Amsterdam,
The Netherlands, April 12–14, 1999 Proceedings 7. Springer. 1999, pp. 461–472.

[31] HugeTLB Pages. 2023. URL: https://www.kernel.org/doc/html/v6.7/
admin-guide/mm/hugetlbpage.html .

[32] HugeTLBpage on ARM64. 2023. URL: https://www.kernel.org/doc/html/
v6.7/arch/arm64/hugetlbpage.html .

[33] Ayal Itzkovitz, Assaf Schuster, and Lea Shalev. “Thread migration and its ap-
plications in distributed shared memory systems”. In: Journal of Systems and
Software 42.1 (1998), pp. 71–87.

https://doi.org/10.1109/ICSESS.2018.8663720
https://doi.org/10.1109/ICSESS.2018.8663720
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://www.kernel.org/doc/html/v6.7/admin-guide/mm/hugetlbpage.html
https://www.kernel.org/doc/html/v6.7/admin-guide/mm/hugetlbpage.html
https://www.kernel.org/doc/html/v6.7/arch/arm64/hugetlbpage.html
https://www.kernel.org/doc/html/v6.7/arch/arm64/hugetlbpage.html


BIBLIOGRAPHY 40

[34] Chengfan Jia et al. “Improving the performance of distributed tensorflow with
RDMA”. In: International Journal of Parallel Programming 46 (2018), pp. 674–
685.

[35] Stefanos Kaxiras et al. “Turning Centralized Coherence and Distributed Critical-
Section Execution on their Head: A New Approach for Scalable Distributed
Shared Memory”. In: Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing. HPDC ’15. Portland,
Oregon, USA: Association for Computing Machinery, 2015, pp. 3–14. ISBN:
9781450335508. DOI: 10.1145/2749246.2749250 . URL: https://doi.org/
10.1145/2749246.2749250 .

[36] Ahmed Khawaja et al. “Sharing, Protection, and Compatibility for Reconfigurable
Fabric with {AmorphOS}”. In: 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 2018, pp. 107–127.

[37] Sang-Hoon Kim et al. “DeX: Scaling Applications Beyond Machine Boundaries”.
In: 2020 IEEE 40th International Conference on Distributed Computing Systems
(ICDCS). 2020, pp. 864–876. DOI: 10.1109/ICDCS47774.2020.00021 .

[38] Sowoong Kim, Myeonggyun Han, and Woongki Baek. “MARF: A Memory-
Aware CLFLUSH-Based Intra-and Inter-CPU Side-Channel Attack”. In: Euro-
pean Symposium on Research in Computer Security. Springer. 2023, pp. 120–
140.

[39] Toddj Kjos et al. Hardware cache coherent input/output. eng. PALO ALTO,
1996.

[40] Daniel Lenoski et al. “The stanford dash multiprocessor”. In: Computer 25.3
(1992), pp. 63–79.

[41] Feng Li et al. “Accelerating relational databases by leveraging remote memory
and RDMA”. In: Proceedings of the 2016 International Conference on Manage-
ment of Data. 2016, pp. 355–370.

[42] Kai Li and Richard Schaefer. “Shiva: An operating system transforming a hyper-
cube into a shared-memory machine”. In: (1989).

[43] libbpf Overview. 2023. URL: https://www.kernel.org/doc/html/v6.7/
bpf/libbpf/libbpf_overview.html .

[44] Arm Ltd. Arm Server Base System Architecture 7.1. 2022. URL: https : / /
developer.arm.com/documentation/den0029/h .

[45] Arm Ltd. SystemReady SR. 2024. URL: https://www.arm.com/architecture/
system-architectures/systemready-certification-program/sr .

[46] Honghui Lu et al. “Message passing versus distributed shared memory on
networks of workstations”. In: Supercomputing’95: Proceedings of the 1995
ACM/IEEE Conference on Supercomputing. IEEE. 1995, pp. 37–37.

[47] Xiaoyi Lu et al. “Accelerating spark with RDMA for big data processing: Early
experiences”. In: 2014 IEEE 22nd Annual Symposium on High-Performance
Interconnects. IEEE. 2014, pp. 9–16.

[48] Jiacheng Ma et al. “A hypervisor for shared-memory FPGA platforms”. In: Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 2020, pp. 827–844.

[49] Jeremy Manson and Brian Goetz. 2004. URL: https : / / www . cs . umd . edu /
~pugh/java/memoryModel/jsr-133-faq.html .

https://doi.org/10.1145/2749246.2749250
https://doi.org/10.1145/2749246.2749250
https://doi.org/10.1145/2749246.2749250
https://doi.org/10.1109/ICDCS47774.2020.00021
https://www.kernel.org/doc/html/v6.7/bpf/libbpf/libbpf_overview.html
https://www.kernel.org/doc/html/v6.7/bpf/libbpf/libbpf_overview.html
https://developer.arm.com/documentation/den0029/h
https://developer.arm.com/documentation/den0029/h
https://www.arm.com/architecture/system-architectures/systemready-certification-program/sr
https://www.arm.com/architecture/system-architectures/systemready-certification-program/sr
https://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html
https://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html


BIBLIOGRAPHY 41

[50] Dimosthenis Masouros et al. “Adrias: Interference-Aware Memory Orchestra-
tion for Disaggregated Cloud Infrastructures”. In: 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE. 2023,
pp. 855–869.

[51] David S Miller, Richard Henderson, and Jakub Jelinek. Dynamic DMA mapping
Guide. 2024. URL: https : / / www . kernel . org / doc / html / v6 . 7 / core -
api/dma-api-howto.html .

[52] Vijay Nagarajan et al. A primer on memory consistency and cache coherence.
Springer Nature, 2020.

[53] Jacob Nelson et al. “{Latency-Tolerant} software distributed shared memory”. In:
2015 USENIX Annual Technical Conference (USENIX ATC 15). 2015, pp. 291–
305.

[54] SeungYong Oh and JongWon Kim. “Stateful Container Migration employing
Checkpoint-based Restoration for Orchestrated Container Clusters”. In: 2018
International Conference on Information and Communication Technology Con-
vergence (ICTC). 2018, pp. 25–30. DOI: 10.1109/ICTC.2018.8539562 .

[55] Ordering in core::sync::atomic - Rust. 2024. URL: https://doc.rust-lang.
org/core/sync/atomic/enum.Ordering.html .

[56] Neil Parris. Extended system coherency: Cache Coherency Fundamentals. 2013.
URL: https://community.arm.com/arm-community-blogs/b/architectures-
and-processors-blog/posts/extended-system-coherency--part-1--
cache-coherency-fundamentals .

[57] Christian Pinto et al. “Thymesisflow: A software-defined, hw/sw co-designed
interconnect stack for rack-scale memory disaggregation”. In: 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE.
2020, pp. 868–880.

[58] Platform-Specifc Notes. 2023. URL: https : / / chapel - lang . org / docs /
platforms/index.html# .

[59] The FreeBSD Project. FreeBSD manual pages. 2021. URL: https : / / man .
freebsd . org / cgi / man . cgi ? query = bpf & manpath = FreeBSD + 14 . 0 -
RELEASE+and+Ports .

[60] Manuel Rodrguez-Pascual et al. “Job migration in hpc clusters by means of
checkpoint/restart”. In: The Journal of Supercomputing 75 (2019), pp. 6517–
6541.

[61] Steven Rostedt. ftrace - Function Tracer. Ed. by Du Changbin. 2023. URL: https:
/ / www . kernel . org / doc / html / v6 . 7 / trace / ftrace . html # dynamic -
ftrace .

[62] Ioannis Schoinas et al. “Sirocco: Cost-effective fine-grain distributed shared
memory”. In: Proceedings. 1998 International Conference on Parallel Archi-
tectures and Compilation Techniques (Cat. No. 98EX192). IEEE. 1998, pp. 40–
49.

[63] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. “Distributed Shared Persis-
tent Memory”. In: Proceedings of the 2017 Symposium on Cloud Computing.
SoCC ’17. Santa Clara, California: Association for Computing Machinery, 2017,
pp. 323–337. ISBN: 9781450350280. DOI: 10.1145/3127479.3128610 . URL:
https://doi.org/10.1145/3127479.3128610 .

https://www.kernel.org/doc/html/v6.7/core-api/dma-api-howto.html
https://www.kernel.org/doc/html/v6.7/core-api/dma-api-howto.html
https://doi.org/10.1109/ICTC.2018.8539562
https://doc.rust-lang.org/core/sync/atomic/enum.Ordering.html
https://doc.rust-lang.org/core/sync/atomic/enum.Ordering.html
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/extended-system-coherency---part-1---cache-coherency-fundamentals
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/extended-system-coherency---part-1---cache-coherency-fundamentals
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/extended-system-coherency---part-1---cache-coherency-fundamentals
https://chapel-lang.org/docs/platforms/index.html#
https://chapel-lang.org/docs/platforms/index.html#
https://man.freebsd.org/cgi/man.cgi?query=bpf&manpath=FreeBSD+14.0-RELEASE+and+Ports
https://man.freebsd.org/cgi/man.cgi?query=bpf&manpath=FreeBSD+14.0-RELEASE+and+Ports
https://man.freebsd.org/cgi/man.cgi?query=bpf&manpath=FreeBSD+14.0-RELEASE+and+Ports
https://www.kernel.org/doc/html/v6.7/trace/ftrace.html#dynamic-ftrace
https://www.kernel.org/doc/html/v6.7/trace/ftrace.html#dynamic-ftrace
https://www.kernel.org/doc/html/v6.7/trace/ftrace.html#dynamic-ftrace
https://doi.org/10.1145/3127479.3128610
https://doi.org/10.1145/3127479.3128610


BIBLIOGRAPHY 42

[64] Transparent Hugepage Support. 2023. URL: https://www.kernel.org/doc/
html/v6.7/admin-guide/mm/transhuge.html .

[65] upcc.1. 2022. URL: https://upc.lbl.gov/docs/user/upcc.html .
[66] Maarten Van Steen and Andrew S Tanenbaum. Distributed systems. Maarten van

Steen Leiden, The Netherlands, 2017.
[67] Arjan van de Ven. Background on ioremap, cacheing, cache coherency on x86.

2008. URL: https://lkml.org/lkml/2008/4/29/480 .
[68] Qing Wang et al. “Concordia: Distributed Shared Memory with In-Network

Cache Coherence”. In: 19th USENIX Conference on File and Storage Tech-
nologies (FAST 21). USENIX Association, Feb. 2021, pp. 277–292. ISBN: 978-
1-939133-20-5. URL: https : / / www . usenix . org / conference / fast21 /
presentation/wang .

[69] Paul Werstein, Mark Pethick, and Zhiyi Huang. “A performance comparison of
dsm, pvm, and mpi”. In: Proceedings of the Fourth International Conference on
Parallel and Distributed Computing, Applications and Technologies. IEEE. 2003,
pp. 476–482.

[70] Xelu86 et al. SMB Direct. 2024. URL: https://learn.microsoft.com/en-
us/windows-server/storage/file-server/smb-direct .

[71] Jian Yang, Joseph Izraelevitz, and Steven Swanson. “{FileMR}: Rethinking
{RDMA} Networking for Scalable Persistent Memory”. In: 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20). 2020,
pp. 111–125.

[72] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing”. In: 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). San Jose, CA: USENIX As-
sociation, Apr. 2012, pp. 15–28. ISBN: 978-931971-92-8. URL: https://www.
usenix. org / conference / nsdi12 / technical - sessions / presentation /
zaharia .

[73] Jin Zhang et al. “Giantvm: A type-ii hypervisor implementing many-to-one vir-
tualization”. In: Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. 2020, pp. 30–44.

[74] Huan Zhou et al. “DART-MPI: An MPI-based implementation of a PGAS run-
time system”. In: Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models. 2014, pp. 1–11.

https://www.kernel.org/doc/html/v6.7/admin-guide/mm/transhuge.html
https://www.kernel.org/doc/html/v6.7/admin-guide/mm/transhuge.html
https://upc.lbl.gov/docs/user/upcc.html
https://lkml.org/lkml/2008/4/29/480
https://www.usenix.org/conference/fast21/presentation/wang
https://www.usenix.org/conference/fast21/presentation/wang
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia


Appendix A

Terminologies

This chapter provides a listing of all terminologies used in this thesis that may be of
interest or warrant a quick-reference entry during reading.
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Appendix B

More on The Linux Kernel

This chapter provides some extra background information on the Linux kernel that may
have been mentioned or implied but bears insufficient significance to be explained in
the Background chapter of this thesis.

B.1 Processor Context

B.2 enum dma_data_direction

B.3 Use case for dcache_clean_poc: smbdirect
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Appendix C

Cut & Extra Work

This chapter provides a brief summary of some work that was done during the writing
of the thesis, but the author decided against inclusion of into the submitted work. It also
explains some assumptions made with regards to the title of this thesis that the author
find to have weakness on second thought.

C.1 Replacement Policy

C.2 Coherency Protocol

C.3 Listing: Userspace

C.4 Why did you do *?
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