
Recent studies has shown a reinvigorated interest in disaggregted/distributed
shared memory systems since the 1990s. While large-scale cluster systems pre-
dominantly make up the mainstream The interplay between (page) replacement
policy and runtime performance of distributed shared memory systems has not
been properly explored.

1 Overview of Distributed Shared Memory

A striking feature in the study of distributed shared memory (DSM) systems
is the non-uniformity of the terminologies used to describe overlapping study
interests. The majority of contributions to DSM study come from the 1990s,
for example [Treadmark, Millipede, Munin, Shiva, etc.]. These DSM
systems attempt to leverage kernel system calls to allow for user-level DSM over
ethernet NICs. While these systems provide a strong theoretical basis for today’s
majority-software DSM systems and applications that expose a (partitioned)
global address space, they were nevertheless constrained by the limitations in
NIC transfer rate and bandwidth, and the concept of DSM failed to take off
(relative to cluster computing).

Improvement in NIC bandwidth and transfer rate allows for applications
that expose global address space, as well as RDMA technologies that leverage
single-writer protocols over hierarchical memory nodes. [GAS and PGAS
(Partitioned GAS) technologies for example Openshmem, OpenMPI,
Cray Chapel, etc. that leverage specially-linked memory sections and
/dev/shm to abstract away RDMA access].

Contemporary works on DSM systems focus more on leveraging hardware
advancements to provide fast and/or seamless software support. Adrias [4], for
example, implements a complex system for memory disaggregation over multiple
compute nodes connected via the ThymesisFlow -based RDMA fabric, where
they observed significant performance improvements over existing data-intensive
processing frameworks, for example APACHE Spark, Memcached, and Redis,
over no-disaggregation (i.e., using node-local memory only, similar to cluster
computing) systems.

1.1 Move Data to Process, or Move Process to Data?

(TBD – The former is costly for data-intensive computation, but the latter may
be impossible for certain tasks, and greatly hardens the replacement problem.)

2 Replacement Policy

In general, three variants of replacement strategies have been proposed for either
generic cache block replacement problems, or specific use-cases where contextual
factors can facilitate more efficient cache resource allocation:

• General-Purpose Replacement Algorithms, for example LRU.
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• Cost-Model Analysis

• Probabilistic and Learned Algorithms

2.1 General-Purpose Replacement Algorithms

Practically speaking, in the general case of the cache replacement problem, we
desire to predict the re-reference interval of a cache block [2]. This follows from
the Belady’s algorithm – the optimal case for the ideal replacement problem
occurs when, at eviction time, the entry with the highest re-reference interval is
replaced. Under this framework, therefore, the commonly-used LRU algorithm
could be seen as a heuristic where the re-reference interval for each entry is
predicted to be immediate. Fortunately, memory access traces of real computer
systems agree with this tendency due to spatial locality [source]. (Real systems
are complex, however, and there are other behaviors...) On the other hand, the
hypothetical LFU algorithm is a heuristic that captures frequency. [. . . ] While
the textbook LFU algorithm suffers from needing to maintain a priority-queue
for frequency analysis, it was nevertheless useful for keeping recurrent (though
non-recent) blocks from being evicted from the cache [source].

Derivatives from the LRU algorithm attempts to balance between frequency
and recency. [Talk about LRU-K, LRU-2Q, LRU-MQ, LIRS, ARC here
. . . ]

Advancements in parallel/concurrent systems had led to a rediscovery of
the benefits of using FIFO-derived replacement policies over their LRU/LFU
counterparts, as book-keeping operations on the uniform LRU/LFU state proves
to be (1) difficult for synchronization and, relatedly, (2) cache-unfriendly [5].
[Talk about FIFO, FIFO-CLOCK, FIFO-CAR, FIFO-QuickDemotion,
and Dueling CLOCK here . . . ]

Finally, real-life experiences have shown the need to reduce CPU time in
practical applications, owing from one simple observation – during the fetch-
execution cycle, all processors perform blocking I/O on the memory. A cache-
unfriendly design, despite its hypothetical optimality, could nevertheless degrade
the performance of a system during low-memory situations. In fact, this proves
to be the driving motivation behind Linux’s transition away from the old LRU-
2Q page replacement algorithm into the more coarse-grained Multi-generation
LRU algorithm, which has been mainlined since v6.1.

2.2 Cost-Model Analysis

The ideal case for the replacement problem fails to account for invalidation of
cache entries. It also assumes for a uniform, dual-hierarchical cache-store model
that is insufficient to capture the heterogeneity of today’s massively-parallel,
distributed systems. High-speed network interfaces are capable of exposing
RDMA interfaces between computer nodes, which amount to almost twice as
fast RDMA transfer when compared to swapping over the kernel I/O stack,
while software that bypass the kernel I/O stack is capable of stretching the
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bandwidth advantage even more (source). This creates an interesting network
topology between RDMA-enabled nodes, where, in addition to swapping at low-
memory situations, the node may opt to “swap” or simply drop the physical
page in order to lessen the cost of page misses.

[Talk about GreedyDual, GDSF, BCL, Amortization]
Traditionally, replacement policies based on cost-model analysis were utilized

in content-delivery networks, which had different consistency models compared
to finer-grained systems. HTTP servers need not pertain to strong consistency
models, as out-of-date information is considered permissible, and single-writer
scenarios are common. Consequently, most replacement policies for static con-
tent servers, while making strong distinction towards network topology, fails to
concern for the cases where an entry might become invalidated, let along multi-
writer protocols. One early paper [3] examines the efficacy of using page fault
frequency as an indicator of preference towards working set inclusion (which I
personally think is highly flawed – to be explained). Another paper [1] explores
the possibility of taking page fault into consideration for eviction, but fails to
go beyond the obvious implication that pages that have been faulted must be
evicted.

The concept of cost models for RDMA and NUMA systems are relatively
underdeveloped, too. (Expand)

2.3 Probabilistic and Learned Algorithms for Cache Re-
placement

Finally, machine learning techniques and low-cost probabilistic approaches have
been applied on the ideal cache replacement problem with some level of success.
[Talk about LeCaR, CACHEUS here].

3 Cache Coherence and Consistency in DSM
Systems

(I need to read more into this. Most of the contribution comes from CPU
caches, less so for DSM systems.) [Talk about JIAJIA and Treadmark’s
coherence protocol.]

Consistency and communication protocols naturally affect the cost for each
faulted memory access . . .

[Talk about directory, transactional, scope, and library cache co-
herence, which allow for multi-casted communications at page fault
but all with different levels of book-keeping.]
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