
Cache Coherency & Memory Model in
RDMA-Backed Software-Coherent DSM

Zhengyi Chen

January 31, 2024

Table of Contents

1. Overview

2. Design

3. Progress

4. Future Work

1. Overview

▶ DSM used to be constrained by NIC bandwidth & transfer
rate (e.g., during the 1990s).

▶ The advent of high(er) transfer rate NICs allows the DSM
idea to be revived.

▶ Orthogonally, hardware acceleration resources are scarce and
highly valuable.
▶ Traditional Scheduling Mechanisms within a Cluster cannot

dynamically allocate hardware accelerators without high
overhead.

▶ Ideally, via high-speed NICs, hardware accelerator could be
statically allocated such that:
▶ Every node have access to the hardware accelerator node in a

time-shared fashion.
▶ Accelerator-attached node can access remote memory much

like attaching accelerator over, say, PCIe.

Heterogeneous Memory Management

▶ HMM facilitates shared address space and transparent data
migration between CPU and peripherals. Specifically:
▶ HMM provides interface for duplicating the CPU page table

with that of the device’s, which are transparently synchronized.
▶ It also provides corresponding struct page representation of

device memory pages, which are faulted between the CPU and
device.

▶ Theoretically, this should allow for devices in remote nodes to
perform HMM using the DMA-capable NIC as a “proxy HMM
device”.

▶ Details of implementation of DSM-over-HMM is beyond this
thesis’s scope.
▶ This thesis focuses on studying and implementing cache

coherency and later, memory model for the DSM subsystem of
this wider, ongoing project.

Cache Coherency, and Why It Matters Here

▶ Cache-incoherent RDMA (e.g., mlx) performs DMA without
synchronization with CPU cache.

▶ We cannot assume MMU to magically maintain coherence.
▶ This seems the case for x86 64 (cache-coherent DMA), but

not ARM64.

▶ At transportation time:
▶ Send to remote: flushes cache into memory before posting

send message.
▶ Receive from remote: invalidate cache entry after worked recv

message.

▶ Example: Linux kernel tree, smbdirect implementation.
▶ smbdirect opportunistically establish SMB over RDMA-capable

network.
▶ smbd post send cleans cache entry prior to posting send

request.
▶ recv done invalidates cache entry after exiting softirq for recv

request (as callback from RDMA driver).

Consistency Model and Protocol

▶ Majority of DSM literatures apply release consistency as the
system’s memory model.

▶ With single-writer protocol, however, the memory model can
be strengthened with little increase in code complexity.
▶ DSPM[1], for example, achieves a de-facto TSO consistency

from its multi-writer release consistency counterpart –
assuming correct memory barriers within each node’s CPU,
distributed writes are never reordered, and distributed reads
can overtake writes.

▶ Consequently, one can easily achieve sequential consistency by
designating the entire write-access duration as a critical
section.

▶ HMM’s “CPU-or-device” data migration model also strongly
implies a single-writer consistency protocol.

2. Design

▶ Designing a DSM necessitates designing:
▶ Consistency Model.
▶ Coherence Protocol and State Machine.
▶ Access Control.

▶ Care needs to be taken to ensure that the in-kernel
implementation is:
▶ Correct,
▶ Performant,
▶ Exploits RDMA’s traits.

Protocol Excerpt: Write-Invalidate

P1

P2

P3

P1: Allocated X — PT Home; Access Ctrl.

Read(x) x;
Shared

Write(x)

Inv(x) Read(x)

x;
Shared;
NewHome

1. Read 2. Write-Invalidate 3. Post-Inv Read

x; Excl.

The T -state indicates a transitionary state for some shared page.

Consistency Model: TSO

▶ Total Store Ordering allows Reads to bypass Stores.
▶ Assuming correct use of node-local synchronization on all

nodes, applying TSO in a home-based DSM allows for:
▶ When another node tries to read T-page from access-control

node: W→R violation.
▶ When another node tries to read S-page from data-provider

nodes: W→R violation (if e.g., the invalidation message from
access-control node was received afterwards).

▶ Data-provider and access-control nodes work on one request at
a time: no R→W violation.

▶ Write-accesses serialized at access-control node: no W→W
violation.

Consistency Model: Strengthen to Sequential

▶ By corollary, can reverse the previous page’s statements to
strengthen to sequential consistency:
▶ Disallow T-pages from being serviced until new page content is

installed: lengthens critical section.
▶ Abolish data-provider nodes: access-control nodes become

bottleneck.

Coherence Protocol: Possible Features

▶ Multi-data-provider Protocol: Instead of having one
data-provider, have multiple data-provider nodes that are
automatically write-back to prevent network bottleneck.
▶ Data provider nodes may be dynamically assigned.
▶ Extra metadata can limit scalability.

▶ Auto-share: likewise, write-back pages to non-data-provider
nodes to take advantage of 1-sided communications.

▶ Request aggregation: aggregate RDMA transfers for optimal
transfer performance.
▶ Need to be coherent with program sequence!
▶ Enables write-request merging.

Stateful Nodes & Transitions (Provisional)
▶ Nodes (e.g., within the cluster) become tightly bound with

the properties of each shared page(s).

Stateful Nodes & Transitions (Provisional) (Cont.)

▶ MN (Manager Nodes): Provide access-control and (fallback)
data-provision.

▶ HN (Home Nodes): Provide data-provision. Can be
write-back or write-invalidate.

▶ SN (Sharer Nodes): Share data within a reader-only “epoch”.
Can be write-back or write-invalidate.

▶ NSN (Non-sharer Nodes): Nodes in network without sharing
the particular page(s).

▶ CN (Commit Node): Node that acquired the single-writer
access to the shared page.

▶ Message variants are not finalized:
▶ Goal: Composable message chains that allow for

“piggy-backing” of multiple procedures.

Stateful Nodes: Transition Paths

▶ Filled line transitions indicate local requests remote to
perform state transition.

▶ Dashed line transitions indicate local implicitly transitions
prior to sending request to remote.

▶ Non-committal path concerns about read-only and
copy-on-write sharing. Sharers cannot make global
modification to cached local data.

▶ Invalidation path is duo with commit operations (due to
write-invalidation).

▶ Committal path concerns about global write sharing. Only
one writer is allowed to write and commit at one time.

▶ Problem: How exactly to integrate RDMA remote read/write
into this?

3. Progress

▶ Goal: in-kernel implementation of software cache-coherency
via non-coherent RDMA hardware.

▶ Optimistic Goal: in-kernel implementation of memory model
in DSM.

▶ Progress: studied and isolated mechanism for data cache
invalidation/flushing in ARM64, which allows the DSM to run
in heterogeneous ISA clusters.

▶ Integration with kernel & main DSM kernel module remains
at hand: is it absolutely necessary to export new symbols for
such an important operation?

On-demand Coherency in ARM64

▶ ARMv8 defines two levels of cache coherence:
▶ Point-of-Unification: Within a core, instruction cache, data

cache, and TLB all agree in the copy seen for a particular
address.

▶ Notably, changing PTE requires PoU.

▶ Point-of-Coherence: Between all DMA-capable peripherals
(CPU or otherwise), they all agree in the copy seen for a
particular address.

For this thesis’s purposes, strive for PoC.
▶ Operations to achieve the latter are encapsulated in the Linux

kernel as (d|i)cache (clean|inval) poc.
▶ Declared under arch/arm64/include/asm/cacheflush.h.
▶ Defined in arch/arm64/mm/cache.S.
▶ Takes virtual address wrt. current address space to

writeback/invalidate cache entries.
▶ Problem: Can only be called in process context (for userspace

virtual addresses) or in all contexts (for kernel virtual
addresses)?

Kernel Patch for On-demand Coherency

▶ Problem: These symbols are not exported – not intended for
driver use.

▶ Temporary solution: re-export them via patching the kernel.
▶ Note: Kernel version v6.7.0
▶ Longish-term solution: arrange kernel module code in a way

that takes advantage of existing driver API (e.g., via DMA
API, for example smbdirect).

▶ Implements wrapper function dcache clean poc to
re-export dcache clean poc into driver namespace.

▶ Exports symbol into separate header file.

Proof-of-Concept Kernel Module

▶ Dynamically allocates GFP USER pages and remaps to
userspace on mmap.
▶ GFP USER so (for convenience) pages can be directly

addressable in kernelspace (via kernel page table).
▶ Pages are lazily allocated and shared between multiple

processes (i.e., user address spaces).
▶ Exposed as character device /dev/my shmem.

▶ Around 300+ LoC.
▶ Problem: flawed premise for testing cache writeback!

▶ Summary: CPU datapath differs from DMA datapath,
common cache coherency maintenance operations are already
performed in common file/virtual memory area operation code.

▶ Idea: perform cache write-back on vm ops->close.
▶ Reality: virtual memory area already cleaned from cache and

removed from address space prior to calling vm ops->close.
▶ Fix: Implement custom ioctl?

4. Future Work

1. Incorporate cache coherence mechanism into the larger
project.

2. Implement memory model within the larger project. This
involves:
▶ Making adjustment to message type and structure

specifications for better inter-operation with RDMA.
▶ Implement memory model programmatically.

References

[1] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. “Distributed
shared persistent memory”. In: Proceedings of the 2017
Symposium on Cloud Computing. 2017, pp. 323–337.

	1. Overview
	2. Design
	3. Progress
	4. Future Work
	References

