
Progress Report: Page Cache Consistency Model

Zhengyi Chen

December 4, 2023



The System

▶ Remote node(s) abstracted as shared memory device
“/dev/rshm”

▶ Heterogeneous Memory Management (HMM) ensures unified
address space between local and device memory.

▶ Migration of pages between CPU and “device” is transparent
to userspace – no need for copying/mapping.

▶ In reality, “/dev/rshm” a handler for RDMA access between
nodes.
▶ This involves remote read/write and moving page content

between nodes.
▶ Local node serves as home node & address space host at share

time.
▶ Remote nodes attached on /dev/rshm as accelerator.



The Problem: Consistency Protocol

▶ Single-Writer, Multiple-Reader Protocol

▶ Need to be performant. . . with some ergonomics
▶ Two Hypothetical Protocols:

▶ “RwLock” Consistency Protocol
▶ Acq-Rel Consistency Protocol

▶ Former ensures strong single-writer consistency
▶ – Also easier to program with!

▶ Latter allows concurrent in-memory non-committal
computation



“RwLock” Consistency Protocol

Similar to a read-write lock where:

▶ Multiple readers can exist for a clean page – the page is
shared.

▶ Only one write is allowed for a clean page – the page becomes
exclusive.

▶ For one writer node to be allowed sole write access to some
page, all other readers need to have their page cache
invalidated.

▶ While the sole writer node has not yet committed, no other
reader or writer nodes are allowed to be served this page.

▶ When the sole writer commits, it becomes the new home node
which serves the updated page content.



“RwLock” Consistency Protocol

P1

P2

P3

P1: Allocated X — PT Home; Access Ctrl.

Read(x) x; 
Shared

Write(x)

Inv(x) Read(x)

x; 
Shared; 
NewHome

1. Read 2. Write-Invalidate 3. Post-Inv Read

x; Excl.

Note: The blue arrow should be acknowledged by P3 – forgot to
put the ack. arrow in.



Acq-Rel Consistency Protocol

In RwLock’s case, read requests result in installation of read-only
pages at remote nodes.
Alternatively, this protocol allows read/write pages to be installed
at remote nodes at read time. Such writes are non-committal and
cannot be synced with the entire system.
To summarize:

▶ “Readers” can write to its locally installed page without any
means to synchronize the change.

▶ “Writers” need to acquire global write access from the PT
node, which invalidates all shared pages.

▶ i.e., Instead of write-invalidate, perform acquire-invalidate.



Consistency Protocol: Knobs and Mods

We can modify these two protocols further as follows:

▶ Multi-home Protocol: instead of having one home at a time,
have multiple homes (e.g., when writer commits) to prevent
network bottleneck.

▶ Auto-share: Mark pages shared via /dev/rshm as
automatically shared to some remote nodes such that 1-way
communications suffice to re-validate invalidated pages.
▶ Potential for communication reduction – debatable.



What about Consistency Model?

▶ The weaker a consistency model is, the more difficult it is to
program with.
▶ Weak ordering architectures (e.g., ARMv8) more or less

depends on compiler/interpreter to emit barriers as see fit
Haynes, Sequential consistency in armv8.

▶ Bad for usability/portability – programs may need to be
compiled using a modified toolchain, else need to add these
synchronization instructions/function calls everywhere.

▶ 1 uses Partial Store Order.
▶ Preserves RAR, WAR – “synchronous read. . . asynchronous

write”
▶ Easier to use than relaxed ordering.

▶ 2 uses strong consistency, but warns about its scalability.

1Cai et al., “Efficient distributed memory management with RDMA and
caching”.

2Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.



Consistency Model: Cont.

▶ Similar to Concordia3, the proposed protocols also assume
strong consistency.

▶ Further work needed to see how to adapt these protocols for
weaker consistency models.

3Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.


