Progress Report: Page Cache Consistency Model

Zhengyi Chen

December 4, 2023

The System

» Remote node(s) abstracted as shared memory device
“/dev/rshm"

» Heterogeneous Memory Management (HMM) ensures unified
address space between local and device memory.

» Migration of pages between CPU and “device” is transparent
to userspace — no need for copying/mapping.
» In reality, “/dev/rshm” a handler for RDMA access between
nodes.
» This involves remote read/write and moving page content
between nodes.
» Local node serves as home node & address space host at share
time.
> Remote nodes attached on /dev/rshm as accelerator.

The Problem: Consistency Protocol

» Single-Writer, Multiple-Reader Protocol

> Need to be performant...with some ergonomics
» Two Hypothetical Protocols:

> “RwLock” Consistency Protocol
» Acg-Rel Consistency Protocol

P Former ensures strong single-writer consistency
» — Also easier to program with!

P Latter allows concurrent in-memory non-committal
computation

“RwLock” Consistency Protocol

Similar to a read-write lock where:

>

| 4

Multiple readers can exist for a clean page — the page is
shared.

Only one write is allowed for a clean page — the page becomes
exclusive.

For one writer node to be allowed sole write access to some
page, all other readers need to have their page cache
invalidated.

While the sole writer node has not yet committed, no other
reader or writer nodes are allowed to be served this page.
When the sole writer commits, it becomes the new home node
which serves the updated page content.

“RwLock” Consistency Protocol

P1: Allocated X — PT Home; Access Ctrl.

Write(x) X; EXpL.

Rl)
N —_
_i
Ls
!
:
:
y v

Shared;
NewHome

PR— 1 e ooooceoee: >
1. Read 2. Write-Invalidate 3. Post-Inv Read

Note: The blue arrow should be acknowledged by P3 — forgot to
put the ack. arrow in.

Acg-Rel Consistency Protocol

In RwLock’s case, read requests result in installation of read-only
pages at remote nodes.
Alternatively, this protocol allows read/write pages to be installed
at remote nodes at read time. Such writes are non-committal and
cannot be synced with the entire system.
To summarize:
> “Readers” can write to its locally installed page without any
means to synchronize the change.
> “Writers" need to acquire global write access from the PT
node, which invalidates all shared pages.

» i.e., Instead of write-invalidate, perform acquire-invalidate.

Consistency Protocol: Knobs and Mods

We can modify these two protocols further as follows:
» Multi-home Protocol: instead of having one home at a time,
have multiple homes (e.g., when writer commits) to prevent
network bottleneck.

P Auto-share: Mark pages shared via /dev/rshm as
automatically shared to some remote nodes such that 1-way
communications suffice to re-validate invalidated pages.

» Potential for communication reduction — debatable.

What about Consistency Model?

» The weaker a consistency model is, the more difficult it is to
program with.

» Weak ordering architectures (e.g., ARMv8) more or less
depends on compiler/interpreter to emit barriers as see fit
Haynes, Sequential consistency in armv8.

» Bad for usability/portability — programs may need to be
compiled using a modified toolchain, else need to add these
synchronization instructions/function calls everywhere.

» 1 uses Partial Store Order.

» Preserves RAR, WAR — “synchronous read. .. asynchronous
write”
» Easier to use than relaxed ordering.

> 2 uses strong consistency, but warns about its scalability.

1Cai et al., “Efficient distributed memory management with RDMA and
caching”.

2Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.

Consistency Model: Cont.

» Similar to Concordia®, the proposed protocols also assume
strong consistency.

» Further work needed to see how to adapt these protocols for
weaker consistency models.

3Wang et al., “Concordia: Distributed shared memory with {In-Network}
cache coherence”.

