Cache Coherency & Memory Model in
RDMA-Backed Software-Coherent DSM

Zhengyi Chen

January 31, 2024

Table of Contents

1. Overview

2. Design

3. Progress

4. Future Work

1. Overview

» DSM used to be constrained by NIC bandwidth & transfer
rate (e.g., during the 1990s).

» The advent of high(er) transfer rate NICs allows the DSM
idea to be revived.

» Orthogonally, hardware acceleration resources are scarce and
highly valuable.
» Traditional Scheduling Mechanisms within a Cluster cannot
dynamically allocate hardware accelerators without high
overhead.

» Ideally, via high-speed NICs, hardware accelerator could be
statically allocated such that:

» Every node have access to the hardware accelerator node in a
time-shared fashion.

P Accelerator-attached node can access remote memory much
like attaching accelerator over, say, PCle.

Heterogeneous Memory Management

» HMM facilitates shared address space and transparent data
migration between CPU and peripherals. Specifically:
» HMM provides interface for duplicating the CPU page table
with that of the device's, which are transparently synchronized.
> It also provides corresponding struct page representation of
device memory pages, which are faulted between the CPU and
device.

» Theoretically, this should allow for devices in remote nodes to
perform HMM using the DMA-capable NIC as a “proxy HMM
device”.

» Details of implementation of DSM-over-HMM is beyond this
thesis's scope.

» This thesis focuses on studying and implementing cache
coherency and later, memory model for the DSM subsystem of
this wider, ongoing project.

Cache Coherency, and Why It Matters Here

» Cache-incoherent RDMA (e.g., mix) performs DMA without
synchronization with CPU cache.
> We cannot assume MMU to magically maintain coherence.

» This seems the case for x86_64 (cache-coherent DMA), but
not ARM64.

P> At transportation time:

» Send to remote: flushes cache into memory before posting
send message.

» Receive from remote: invalidate cache entry after worked recv
message.

» Example: Linux kernel tree, smbdirect implementation.

» smbdirect opportunistically establish SMB over RDMA-capable
network.

» smbd_post_send cleans cache entry prior to posting send
request.

» recv_done invalidates cache entry after exiting softirq for recv
request (as callback from RDMA driver).

Consistency Model and Protocol

» Majority of DSM literatures apply release consistency as the
system’s memory model.

> With single-writer protocol, however, the memory model can
be strengthened with little increase in code complexity.

» DSPMI1], for example, achieves a de-facto TSO consistency
from its multi-writer release consistency counterpart —
assuming correct memory barriers within each node's CPU,
distributed writes are never reordered, and distributed reads
can overtake writes.

» Consequently, one can easily achieve sequential consistency by
designating the entire write-access duration as a critical
section.

» HMM's “CPU-or-device” data migration model also strongly
implies a single-writer consistency protocol.

2. Design

» Designing a DSM necessitates designing:
» Consistency Model.
» Coherence Protocol and State Machine.
» Access Control.
» Care needs to be taken to ensure that the in-kernel
implementation is:
» Correct,

» Performant,
» Exploits RDMA's traits.

Protocol Overview

>

| 2

Multiple readers can exist for a clean page — the page is
shared.

Only one writer is allowed for a clean page — the page
becomes exclusive.

For one writer node be allowed sole write access to some page,
all other sharers need to have their page cache invalidated
prior to making the change global (commit-invalidate).

While the sole writer node has not yet committed, either:

P no other reader or writer nodes are allowed to be served this
page (stronger consistency model).

» no writers are allowed to be served this page. Readers can be
served stale data (provided data providers do not receive
invalidation message prior to service).

When the sole writer commits, it becomes the sole home node
(data provider) which serves the updated page content.

» Optionally, some nodes can register to have commits written

back instead.

Protocol Excerpt: Write-Invalidate

P1: Allocated X — PT Home; Access Ctrl.

P1} ¥ . A 4 4 >
Read (x), X5 / \nv(xg,‘” \ ';" Read (x)
hared ,,' ','
" J : i
P2 Write(x) x; Excl. # /A v
{ X3
Shared;
NewHome
P3 . >
1. Read 2. Write-Invalidate 3. Post-Inv Read

The T-state indicates a transitionary state for some shared page.

Consistency Model: TSO

» Total Store Ordering allows Reads to overtake Stores.

» Assuming correct use of node-local synchronization on all
nodes, applying TSO in a home-based DSM allows for:

» Another node tries to read T-page from access-control node,
served stale data: W—R violation.

» Another node tries to read S-page from data-provider nodes,
served stale data: W—R violation (if e.g., the invalidation
message from access-control node was received afterwards).

» Data-provider and access-control nodes work on one request at
a time: no R—W violation.

> Write-accesses serialized at access-control node: no W—W
violation.

Consistency Model: Strengthen to Sequential

» By corollary, can reverse the previous page's statements to
strengthen to sequential consistency:
» Disallow T-pages from being serviced until new page content is
installed: lengthens critical section.
» Abolish data-provider nodes: access-control nodes become
bottleneck.

Coherence Protocol: Possible Features

» Multi-data-provider Protocol: Instead of having one
data-provider, have multiple data-provider nodes that are
automatically write-back to prevent network bottleneck.

» Data provider nodes may be dynamically assigned.
» Extra metadata can limit scalability.

» Auto-share: likewise, write-back pages to non-data-provider
nodes, which takes advantage of 1-sided communications
provided by RDMA.

> Request aggregation: aggregate RDMA transfers for optimal
transfer performance.

» Need to be coherent with program sequence!
» Enables write-request merging.

Stateful Nodes & Transitions (Provisional)
» Nodes (e.g., within the cluster) become tightly bound with
the properties of each shared page(s).
=t %:‘:,\ﬂ:dm Blecke. — New—committat slmwj peetn-
Pupie. — Lnvaldasion poste.
Green — Camito.| ”"’"CIF“*’"

Pashod transtions e ictoml , happeus e Teception -
Filled {soictiovs are “assages.

— e - - — - — — ~

ind as Tshm client

*. Cace vehies com be Vn[«vl/L\wLol

Stateful Nodes & Transitions (Provisional) (Cont.)

» MN (Manager Nodes): Provide access-control and (fallback)
data-provision.

» HN (Home Nodes): Provide data-provision. Can be
write-back or write-invalidate.

» SN (Sharer Nodes): Share data within a reader-only “epoch”.
Can be write-back or write-invalidate.

» NSN (Non-sharer Nodes): Nodes in network without sharing
the particular page(s).

» CN (Commit Node): Node that acquired the single-writer
access to the shared page.

> Problem: Message variants are not finalized:

» Goal: Composable message chains that allow for
“piggy-backing” of multiple procedures.

Stateful Nodes: Transition Paths

» Filled line transitions indicate local requests remote to
perform state transition.

» Dashed line transitions indicate local implicitly transitions
prior to sending request to remote.

» Non-committal path concerns about read-only and
copy-on-write sharing. Sharers cannot make global
modification to cached local data.

» Invalidation path is duo with commit operations (due to
write-invalidation).

» Committal path concerns about global write sharing. Only
one writer is allowed to write and commit at one time.

» Problem: How exactly to integrate RDMA remote read/write
into this?

3. Progress

» Goal: in-kernel implementation of software cache-coherency
via non-coherent RDMA hardware.

» Optimistic Goal: in-kernel implementation of memory model
in DSM.

P> Progress: studied and isolated mechanism for data cache
invalidation/flushing in ARM64, which allows the DSM to run
in heterogeneous ISA clusters.

» Integration with kernel & main DSM kernel module remains
at hand: is it absolutely necessary to export new symbols for
such an important operation?

P Repository: https:
//github.com/rubberhead/unnamed_ba_thesis.git.

https://github.com/rubberhead/unnamed_ba_thesis.git
https://github.com/rubberhead/unnamed_ba_thesis.git

On-demand Coherency in ARM64

» ARMv8 defines two levels of cache coherence:
» Point-of-Unification: Within a core, instruction cache, data
cache, and TLB all agree in the copy seen for a particular
address.

> Notably, changing PTE requires PoU.
» Point-of-Coherence: Between all DMA-capable peripherals
(CPU or otherwise), they all agree in the copy seen for a
particular address.

For this thesis's purposes, strive for PoC.

» Operations to achieve the latter are encapsulated in the Linux
kernel as (d|i)cache_(clean|inval) _poc.

» Declared under arch/arm64/include/asm/cacheflush.h.

» Defined in arch/arm64/mm/cache.S.

» Takes virtual address wrt. current address space to
writeback/invalidate cache entries.

» Problem: Can only be called in process context (for user virtual
addresses) or in all contexts (for kernel virtual addresses)?

Kernel Patch for On-demand Coherency

» Problem: These symbols are not exported — not intended for
driver use.
» Temporary solution: re-export them via patching the kernel.

» Note: Kernel version v6.7.0

» Longish-term solution: arrange kernel module code in a way
that takes advantage of existing driver API (e.g., via DMA
API, which for example smbdirect uses).

» Implements wrapper function __dcache_clean poc to
re-export dcache_clean_poc into driver namespace.
» Exports symbol into separate header file.

» Declared in
arch/arm64/include/asm/cacheflush_extra.h.
» Defined in arch/arm64/mm/flush.c.

Proof-of-Concept Kernel Module

» Dynamically allocates GFP_USER pages and remaps to
userspace on mmap.

>

>

>

GFP_USER so (for convenience) pages can be directly
addressable in kernelspace (via kernel page table).
Pages are lazily allocated and shared between multiple
processes (i.e., user address spaces).

Exposed as character device /dev/my_shmem.

» Around 300+ LoC.
» Problem: flawed premise for testing cache writeback!

>

Summary: CPU datapath differs from DMA datapath,
common cache coherency maintenance operations are already
performed in common file/virtual memory area operation code.
Idea: perform cache write-back on vm_ops->close.

Reality: virtual memory area already cleaned from cache and
removed from address space prior to calling vm_ops->close.
Fix: Implement custom ioctl?

4. Future Work

> TBD:
1. Incorporate cache coherence mechanism into the larger project.
2. Implement memory model within the larger project. This
involves:

» Making adjustment to message type and structure
specifications for better inter-operation with RDMA.

» Implement memory model programmatically.

» Further Studies:
1. Swappable RDMA memory region.

» As of now, all DMA pages are non-swappable — they must be
allocated using the SLAB/SLUB allocator for kernel memory,
or via GFP page allocators.

2. Automatic frequent sharer detection for MUX-ing between
commit-invalidation and commit-writeback.

References

[1] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. "Distributed
shared persistent memory"” . In: Proceedings of the 2017
Symposium on Cloud Computing. 2017, pp. 323-337.

	1. Overview
	2. Design
	3. Progress
	4. Future Work
	References

