
Progress Report: Cache Replacement,
Application Performance, and Relations to DSM

Zhengyi Chen

October 9, 2023



(Cache) Replacement Strategies

▶ There have been significant development in (CPU) cache
replacement strategies in the last decades.

▶ e.g., RRIP(++)1 and more recently (various) ML-derived
heuristics.

▶ Also popular is studying adequate cache replacement
strategies for distributed systems (though more stagnant).

▶ There are many variables within each cached system (whether
CPU or distributed FS, etc.) that affect which strategy is
more efficient in operation.

▶ Moreover, different applications (e.g., threads) exhibit
different access patterns which may be better served by one
strategy than another.2

1Jaleel et al., “High Performance Cache Replacement Using Re-Reference
Interval Prediction (RRIP)”.

2Sethumurugan, Yin, and Sartori, “Designing a Cost-Effective Cache
Replacement Policy using Machine Learning”.



Notable (i.e., Encountered) Strategies

▶ LRU family

▶ FIFO family

▶ Adaptive Replacement Cache

▶ CPU-LLC Intended: Dynamic Insertion Policy, Re-Reference
Interval Prediction, Signature-based Hit Predictor, . . .

▶ ML-derived: Reinforcement Learned Replacement, LeCaR,
Cache Replacement Problem as Markov Decision Process3, . . .

3Gu et al., “Distributed cache replacement for caching-enable base stations
in cellular networks”.



Notable (i.e., Encountered) Strategies

▶ The performance of replacement strategies correlate strongly
to the context of their operation.

▶ For example, LRU is theoretically better-performing than
FIFO in their most textbook implementations but recent
studies4 have shown that FIFO can outperform LRU in
practice (CDNs, for example, where even cache bookkeeping
structures can be costly).

▶ To summarize, The (dynamic) choice of replacement
algorithm in any system is of practical concern!

4Eytan et al., “It’s Time to Revisit LRU vs. FIFO”; Yang et al., “FIFO Can
Be Better than LRU: The Power of Lazy Promotion and Quick Demotion”.



LRU & FIFO family – Patches and Applications

▶ The state-of-the-art implementations of LRU or FIFO is
far-cry from their textbook implementations.

▶ This is so that they can capture both recency and frequency:
we desire to use both to predict/assume the re-reference
interval of a given entry.

▶ e.g., Linux uses LRU GEN which is a multi-queue LRU strategy
wherein each queue(generation) represents a ”similar” level of
access recency and is evicted in batch.

▶ The kernel developers wanted a fast and reasonably good
replacer as opposed to an optimal one.

▶ Likewise, Yang, et.al.5 shows that FIFO with lazy promotion
and quick demotion outperforms textbook LRU.

5Yang et al., “FIFO Can Be Better than LRU: The Power of Lazy
Promotion and Quick Demotion”.



LRU GEN and Access Patterns

The LRU GEN algorithm specifically makes stronger protection of
pages for memory accesses through PT than through FD:

▶ Heap/Stack/Text access misses have higher cost –
executables perform blocking I/O at memory access, less likely
for file access.

▶ They are also more likely to miss, as their in-kernel dirty bits
are approximated.

▶ Finally, they can be reasonably assumed to more likely exhibit
temporal locality.

Nevertheless, the algorithm is capable to dynamic adjustment on
re-faults – the data model of programs can be file-based or
object-based. The same algorithm can deviate in fault rates on
different programs on the same node.



Machine Learning as Analytic Tool: RLR, etc.

▶ Large distributed systems (e.g., CDNs) can afford to perform
machine learning for cache replacement tasks6: run-time is
much faster than I/O so some cycles could be afforded.

▶ For page replacement in kernel, we can’t really afford to run
anything costly (Amir).

▶ ML analysis7 shows how different (computation-intensive)
programs exhibit distinct access patterns.

6Gu et al., “Distributed cache replacement for caching-enable base stations
in cellular networks”.

7Sethumurugan, Yin, and Sartori, “Designing a Cost-Effective Cache
Replacement Policy using Machine Learning”.



Machine Learning as Analytic Tool: RLR, etc.

8

P.S. preuse: set access since last access to address/line.

8Sethumurugan, Yin, and Sartori, “Designing a Cost-Effective Cache
Replacement Policy using Machine Learning”.



DSM, Applications, and Memory (Contention)

The speedup of applications on DSM systems is negatively
correlated to shared memory contention.
Take TreadMarks9 for example:

▶ Jacobi is a solver for linear system of equations via the
successive over-relaxation method. The memory access
pattern should be map-reduce-like: the problem is parallelized
w/ partial matrices for each node with immutable storage of
the relevant matrices? TreadMarks achieves ∼ 7x-speedup on
a 8-node system over one single-core node.

▶ Water is a parallel N-body molecular dynamics simulator that
requires at least O(N2 ) communications per processor.
TreadMarks only achieves ∼ 4x-speedup with around 47%
time used for blocking communications.

9Cox et al., “TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems”.



DSM, Applications, and Memory (Contention)

▶ It’s kinda difficult to compare statistics from different DSM
systems.

▶ Even with the same programs being run, different parameters
makes for different program behaviors wrt. contention, etc.

▶ Logically speaking, the more contention on the same address,
the less speedup is possible for the system10.

▶ Should cache replacement strategies be aware of how
contended a page may be to prevent it from e.g., being
swapped out?

10Lara et al., “The effect of contention on the scalability of page-based
software shared memory systems”.



Hardware-based Dynamic Strategy Selection: DIP

Hardware-based replacement strategies can provide low-cost
inspirations for software replacement strategies.

11

Problem: How can this be scaled for multiple strategies?

11Qureshi et al., “Adaptive Insertion Policies for High Performance Caching”.


